б). (в знаменателе выносим "y" и сокращаем с "y" в числителе)
ответ:
в). (раскрываем числитель по формуле разности квадратов , в знаменателе выносим "3")
ответ:
Задание №2
а). (одинаковый знаменатель, значит можно складывать)
ответ:
б). (знаменатели разные, чтобы сложить приводим к общему знаменателю. Первую дробь умножаем на 4, вторую умножаем на 5, после чего складываем)
ответ:
в). (принцип тот же. "а" есть и там, и там в знаменателе, значит первую дробь умножаем на 3, вторую умножаем на 2, чтобы получить общий знаменатель, после чего вычитаем)
ответ:
г). (знаменатель одинаковый - складываем)
ответ: 2
Задание №3
а). (умножаем первую дробь на a, а вторую умножаем на 2, после чего вычитаем дроби)
ответ:
б). (первую дробь умножаем на знаменатель второй дроби, а вторую дробь умножаем на знаменатель первой дроби, после чего вычитаем)
(ещё можно свернуть по формуле разности квадратов )
ответ:
в). (вынесем "b" в знаменателе второй дроби за скобку и умножим первую дробь на "b", после чего вычитаем)
ответ:
Задание №4
(приведем к общему знаменателю умножив на "2y", после чего сложим)
(теперь подставляем x = -8 и y = 0,1. Десятичное число 0,2 = дроби . Когда получилась трёхэтажная дробь, то знаменатель дроби в знаменателе переносится в числитель и умножается на числитель общей дроби, а знаменатель становится числитель дроби в знаменателе)
ответ: -40
Задание №5
(знаменатель средней дроби раскроем по формуле разности квадратов .
Первую дробь умножим на "х" и на "x+4", среднюю дробь умножим на "х", а третью дробь умножим на "x+4" и на "x-4", после чего посчитаем)
1. а) 2а + 3а = 5а;
б) 7х - 15х = -8x;
в) -17b - 3b = -20b;
г) -2,1y + 7y = 4,9y;
д) -2, 5х + х = -1,5x;
е) -а - 0,8а = -1,8а;
ж) 1/3 x - 2х = -1 2/3x;
з) 1/2а + 1/5а = 7/10а;
и) 5/6 - b = -1/6 b.
2. а) 85 + 12b - 21b + b = (8 + 12 - 21 + 1)b = 0 • b = 0;
б) —13с + 12с + 40с — 18с = (-13 + 12 + 40 - 18)с = 21с;
в) —р — р — р — 3р — р — р = (-1 - 1 - 1 - 3 - 1 - 1)р = —8р;
г) 4,14а + 8,73а + 5,8а — а = (4,14 + 8,73 + 5,8 - 1)а = 17,67а;
3. а) 10а — а — 6 + 76 = (10 - 1)а + (7 - 1)b = - 9а + 66;
б) —15с — 15а + 8а + 4с = (4 — 15)с + (8 — 15)а = -11 - 7а;
в) 0, 3х + 1,6у — 0, Зх — 0,4у = (0,3 — 0,3)х + (1,6- 0, 4)у = 0 + 1,2y = 1,2у;
г) х + у — х — у + 4 = (1 — 1)х + (1 — 1 )у + 4 = 0 + 0 + 4 = 4;
д) 5 — а +4а — b — 6а = 5 + (—1 + 4 — 6)а — b = 5 — За — 6;
е) 1,2с + 1 — 0,6у — 0,8 — 0,2с = (1,2 — 0,2)с — 0,6y + (1 — 0,8) = с - 0,6 + 0,2.
Задание №1
а). (сокращаем на "13y")
ответ:
б). (в знаменателе выносим "y" и сокращаем с "y" в числителе)
ответ:
в). (раскрываем числитель по формуле разности квадратов , в знаменателе выносим "3")
ответ:
Задание №2
а). (одинаковый знаменатель, значит можно складывать)
ответ:
б). (знаменатели разные, чтобы сложить приводим к общему знаменателю. Первую дробь умножаем на 4, вторую умножаем на 5, после чего складываем)
ответ:
в). (принцип тот же. "а" есть и там, и там в знаменателе, значит первую дробь умножаем на 3, вторую умножаем на 2, чтобы получить общий знаменатель, после чего вычитаем)
ответ:
г). (знаменатель одинаковый - складываем)
ответ: 2
Задание №3
а). (умножаем первую дробь на a, а вторую умножаем на 2, после чего вычитаем дроби)
ответ:
б). (первую дробь умножаем на знаменатель второй дроби, а вторую дробь умножаем на знаменатель первой дроби, после чего вычитаем)
(ещё можно свернуть по формуле разности квадратов )
ответ:
в). (вынесем "b" в знаменателе второй дроби за скобку и умножим первую дробь на "b", после чего вычитаем)
ответ:
Задание №4
(приведем к общему знаменателю умножив на "2y", после чего сложим)
(теперь подставляем x = -8 и y = 0,1. Десятичное число 0,2 = дроби . Когда получилась трёхэтажная дробь, то знаменатель дроби в знаменателе переносится в числитель и умножается на числитель общей дроби, а знаменатель становится числитель дроби в знаменателе)
ответ: -40
Задание №5
(знаменатель средней дроби раскроем по формуле разности квадратов .
Первую дробь умножим на "х" и на "x+4", среднюю дробь умножим на "х", а третью дробь умножим на "x+4" и на "x-4", после чего посчитаем)
ответ: