В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
allegron4567
allegron4567
02.04.2022 06:06 •  Алгебра

Вычислите:
1.∫ (3+5 x )4dx
2.∫ √2 x+3dx
3.∫ ( 4+9 x )7dx
4.∫ √3 x−3 dx
5.∫ (6 x2+4 ) dx
6.∫ (3 x2+1 ) dx
7 ∫ (4+9 x3 )6 x2dx

Показать ответ
Ответ:
Igorevna29
Igorevna29
22.12.2020 03:33
А1)  
Найдем производную
F'(x)=(4+cosx)'=-sinx
F'(x)≠f(x)
Значит, функция F(x) не является первообразной для f(x)
ответ: нет

 А2)
F(x)=x²/2-7x+C - общий вид первообразной. Чтобы получить одну из них, достаточно взять вместо С любое число. Пусть С=1.
ответ: F(x)=x²/2-7x+1

A3)
F(x)=1/5 * x⁴/4 - 2/3 x³/3 - 12 x²/2 - 2x=x⁴/20-2x³/9-6x²-2x

А4) 
f(x)=F'(x)=(11/21 ctgx-12 cosx+5)'=11/21 (-1/sin²x) + 12sinx=12sinx-11/(21sin²x)

В1)  
F(x)=3x+x³/3+C
Подставляем координаты точки М и находим С
6=3*1+1³/3+С
C=6-3- \frac{1}{3} =2 \frac{2}{3}
ответ:
3x+ \frac{x^3}{3}+2 \frac{2}{3}

В2) 
F(x)=x³/3+3x²/2+C
Поскольку F'(x)=х²+3х, то для нахождения точек экстремума приравняем ее 0
х²+3х=0
x(x+3)=0
Произведение равно 0, когда хотя бы один из множителей равен 0. Поэтому
x₁=0
x₂+3=0
x₂=-3
Определяем знаки интервалов
        +                -                    +
---------------₀---------------₀---------------->
                  -3                  0
В точке -3 производная меняет знак с плюса на минус, значит, это точка максимума
В точке 0 производная пеняет знак с минуса на плюс, значит, это точка минимума
На промежутке (-∞;-3] и [0;∞)  функция возрастает
На промежутке [-3;0] функция убывает

С1) 
Найдем производную
 F'(x)=(х⁵+3х²-cosх+17)'=5x⁴+sinx
 F'(x)=f(x) для всех х∈(-∞;+∞)
Следовательно, F(x) есть первообразная для f(x). Что и требовалось доказать
0,0(0 оценок)
Ответ:
goooooooooj
goooooooooj
22.12.2020 03:33
А1)  
Найдем производную
F'(x)=(4+cosx)'=-sinx
F'(x)≠f(x)
Значит, функция F(x) не является первообразной для f(x)
ответ: нет

 А2)
F(x)=x²/2-7x+C - общий вид первообразной. Чтобы получить одну из них, достаточно взять вместо С любое число. Пусть С=1.
ответ: F(x)=x²/2-7x+1

A3)
F(x)=1/5 * x⁴/4 - 2/3 x³/3 - 12 x²/2 - 2x=x⁴/20-2x³/9-6x²-2x

А4) 
f(x)=F'(x)=(11/21 ctgx-12 cosx+5)'=11/21 (-1/sin²x) + 12sinx=12sinx-11/(21sin²x)

В1)  
F(x)=3x+x³/3+C
Подставляем координаты точки М и находим С
6=3*1+1³/3+С
C=6-3- \frac{1}{3} =2 \frac{2}{3}
ответ:
3x+ \frac{x^3}{3}+2 \frac{2}{3}

В2) 
F(x)=x³/3+3x²/2+C
Поскольку F'(x)=х²+3х, то для нахождения точек экстремума приравняем ее 0
х²+3х=0
x(x+3)=0
Произведение равно 0, когда хотя бы один из множителей равен 0. Поэтому
x₁=0
x₂+3=0
x₂=-3
Определяем знаки интервалов
        +                -                    +
---------------₀---------------₀---------------->
                  -3                  0
В точке -3 производная меняет знак с плюса на минус, значит, это точка максимума
В точке 0 производная пеняет знак с минуса на плюс, значит, это точка минимума
На промежутке (-∞;-3] и [0;∞)  функция возрастает
На промежутке [-3;0] функция убывает

С1) 
Найдем производную
 F'(x)=(х⁵+3х²-cosх+17)'=5x⁴+sinx
 F'(x)=f(x) для всех х∈(-∞;+∞)
Следовательно, F(x) есть первообразная для f(x). Что и требовалось доказать
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота