Объяснение:
1) log₂(x-1)=1
используем определение логарифма -
логарифмом числа b по основанию a ( logₐb ) называется такое число n, что b=aⁿ, у нас а =2, b = (x-1), n = 1 подставим наши значения
(х-1)=2¹ ⇒ х-1=2⇒х=3 отрезок (0;3]
2) log₂(x-1)≤0
по определению логарифма b >0, у нас х-1 > 0 ⇒ х > 1 это первое условие
ищем второе. сначала решаем уравнение log₂(x-1)=0
используем свойство логарифма logₐ1=0 имеем х-1 = 1 ⇒ х=2
на отрезке (1;2] проверим знак логарифма
это наш отрезок (1;2]
3)
x=3; y=-1
4)
log₂(4-x)≤1
4-x>1 ⇒ x < 4
log₂(4-x)=1 ⇒ 2=4-x ⇒x=2
[2;4)
5)
log₇log₂log₇49
раскручиваем справа
log₇log₂log₇49=log₇log₂2=log₇1=0
log₁₂3+log₁₂4= log₁₂3*4=log₁₂12=1
ответ:
при m < n
объяснение:
чем больше степень корня, тем меньшее число мы получим при извлечении:
возьмём и .
1,44 > 1,41.
возьмём и
1,41 > 1,37
1,37 > 1,34
1,34 > 1,32.
это простенько
возьмём и \
1,04750 > 1,04712
возьмём совсем экстремальный пример и
1,006937 > 1,006931
проверяя дальше мы будем получать то же самое, только различия будут в 9 или 10 цифре после запятой.
удачи!
Объяснение:
1) log₂(x-1)=1
используем определение логарифма -
логарифмом числа b по основанию a ( logₐb ) называется такое число n, что b=aⁿ, у нас а =2, b = (x-1), n = 1 подставим наши значения
(х-1)=2¹ ⇒ х-1=2⇒х=3 отрезок (0;3]
2) log₂(x-1)≤0
по определению логарифма b >0, у нас х-1 > 0 ⇒ х > 1 это первое условие
ищем второе. сначала решаем уравнение log₂(x-1)=0
используем свойство логарифма logₐ1=0 имеем х-1 = 1 ⇒ х=2
на отрезке (1;2] проверим знак логарифма
это наш отрезок (1;2]
3)
x=3; y=-1
4)
log₂(4-x)≤1
4-x>1 ⇒ x < 4
log₂(4-x)=1 ⇒ 2=4-x ⇒x=2
[2;4)
5)
log₇log₂log₇49
раскручиваем справа
log₇log₂log₇49=log₇log₂2=log₇1=0
log₁₂3+log₁₂4= log₁₂3*4=log₁₂12=1
ответ:
при m < n
объяснение:
чем больше степень корня, тем меньшее число мы получим при извлечении:
возьмём и .
1,44 > 1,41.
возьмём и
1,41 > 1,37
возьмём и
1,37 > 1,34
возьмём и
1,34 > 1,32.
это простенько
возьмём и \
1,04750 > 1,04712
возьмём совсем экстремальный пример и
1,006937 > 1,006931
проверяя дальше мы будем получать то же самое, только различия будут в 9 или 10 цифре после запятой.
удачи!