В решении.
Объяснение:
Лодка по течению проплыла 5 часов и 3 часа против, а за это время она всего проплыла 148 км.
Найти скорость течения реки, если собственная скорость равна 18 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость течения реки.
18+х - скорость лодки по течению.
18-х - скорость лодки против течения.
По условию задачи уравнение:
(18+х)*5 + (18-х)*3 = 148
90 + 5х + 54 - 3х = 148
2х = 148 - 144
2х = 4
х = 2 (км/час) - скорость течения реки.
Проверка:
(18+2)*5=100 (км)
(18-2)*3=48 (км)
100+48=148 (км), верно.
Cosx = (1 - tg²x/2)/(1 + tg²x/2)
После использования этих формул получим уравнение с одним неизвестным.
4 tgx/2 /(1 + tg²x/2) + 3 (1 - tg²x/2)/(1 + tg²x/2) = 6 | * (1 + tg²x/2) ≠ 0
4tg x/2 +3(1 - tg²x/2) = 6(1 + tg²x/2)
4tg x/2 +3 - 3 tg²x/2 = 6 + 6 tg²x/2
9 tg²x/2 - 4tgx/2 +3 = 0
Это уравнение не имеет решения, т.к. D < 0
2) 4-Sin2x=cos^2x+2
В уравнении нужно а) сделать один и тот же угол, б) сделать одно название функции.
4 - 2SinxCosx = Cos²x +2
Cos²x + 2SinxCosx -2= 0
Cos²x +2SinxCosx -2*1 = 0
Cos²x + 2SinxCosx -2(Sin²x + Cos²x) = 0
Cos²x + 2SinxCosx -2Sin²x -2Cos²x = 0
2SinxCosx -2Sin²x - Cos²x = 0 | : Cos²x ≠ 0
2tg x - 2tg²x -1 = 0
2tg²x -2tgx +1 = 0
Это квадратное уравнение не имеет решения, т.к. D < 0
В решении.
Объяснение:
Лодка по течению проплыла 5 часов и 3 часа против, а за это время она всего проплыла 148 км.
Найти скорость течения реки, если собственная скорость равна 18 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость течения реки.
18+х - скорость лодки по течению.
18-х - скорость лодки против течения.
По условию задачи уравнение:
(18+х)*5 + (18-х)*3 = 148
90 + 5х + 54 - 3х = 148
2х = 148 - 144
2х = 4
х = 2 (км/час) - скорость течения реки.
Проверка:
(18+2)*5=100 (км)
(18-2)*3=48 (км)
100+48=148 (км), верно.