В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
vladik2ppp
vladik2ppp
02.12.2022 23:51 •  Алгебра

Вычислите данные выражения используя формулу суммы или разности кубов
729+512=17×
1728-1331=1×
2197+216=19×
3375-512=7×
от ​

Показать ответ
Ответ:
кувшинкаВейВей
кувшинкаВейВей
26.05.2022 17:34

1. Пусть масса первого сплава x, тогда масса второго сплава (200-x). Алюминия в первом сплаве - 0,1x, во втором сплаве 0,3(200-x), а в третьем - 0,25·200 = 50

0,1x + 0,3(200-x)=50

60 - 0,2x = 50

0,2x = 10

x = 50 - масса первого сплава

200-x = 150 - масса второго сплава

150 - 50 = 100

ответ: на 100 кг масса первого сплава меньше второго

2. Пусть x - скорость течения реки, а собстенная скорость катера - y, тогда имеем систему:

y + x = 240/8 = 30

y - x = 240/10 = 24

Вычтем из 1-го уравнения второе: 2x = 30-24

2x = 6

x = 3

0,0(0 оценок)
Ответ:
2007628475626
2007628475626
03.04.2021 01:09
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота