В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Reaper655
Reaper655
21.03.2023 03:30 •  Алгебра

Вычислите интеграл 63* интеграл от 2п до п/2*cosx*cos3x*cos5xdx

Показать ответ
Ответ:
dinkooo96
dinkooo96
05.10.2020 14:38
Сначала решим неопределенный интеграл. 

\displaystyle \int\limits {\cos x\cos 3x\cos 5x} \, dx =0.5\displaystyle \int\limits {(\cos2x+\cos4x)\cos5x} \, dx =\\ \\ \\ =0.5\displaystyle \int\limits {\cos4x\cos5x} \, dx +0.5\displaystyle \int\limits {\cos2x\sin5x} \, dx =\\ \\ \\ =0.25\displaystyle \int\limits {(\cos x+\cos 9x)} \, dx +0.25\displaystyle \int\limits {(\cos 3x+\cos 7x)} \, dx =\\ \\ \\ = \dfrac{\sin x}{4} + \dfrac{\sin3x}{12} + \dfrac{\sin7x}{28} + \dfrac{\sin 9x}{36}

Считаем определенный интеграл.

63\cdot \bigg(\dfrac{\sin x}{4} + \dfrac{\sin3x}{12} + \dfrac{\sin7x}{28} + \dfrac{\sin 9x}{36}\bigg)\bigg|^\big{2\pi}_\big{ \frac{\pi}{2} }=\\ \\ \\ =\dfrac{1}{4} \bigg(63\sin x+21\sin 3x+9\sin7x+7\sin 9x\bigg)\bigg|^\big{2\pi}_\big{ \frac{\pi}{2} }=\\ \\ \\ = \dfrac{1}{4} \bigg(63\sin2 \pi +21\sin6 \pi +9\sin14 \pi +7\sin18\pi-63\sin \frac{\pi}{2} -\\ \\ \\ -21\sin\frac{3\pi}{2} -9\sin\frac{7\pi}{2} -7\sin\frac{9\pi}{2} \bigg)=-10
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота