Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
1) x²+3x-40= 0;
2) 13х²-65х-468=0.
есть, как минимум, два сделать это быстро:
1) корни х₁= -5 и х₂= 8
По теореме Виета
х²+рх+q=0
x₁*x₂=q
x₁+x₂=-p
q=-5*8= -40;
-p= -5+8= -3; →p=3
x²+3x-40= 0.
(Можем домножить уравнение на любое число- корни не изменятся,
Например: 3(х²+3х-40)=0*3;
3х²+9х-120=0; - тоже правильный ответ)
2) Любой квадратный трёхчлен ax²+bx+c можно представить в виде множителей:
ax²+bx+c=a (x-x₁)(x-x₂), где x₁, x₂ — корни квадратного уравнения ax₂+bx+c=0.
Поэтому для корней x₁=9, x₂= -4 возьмём любое значение а. Например я хочу а=13 ( Вы можете взять другое)
13(х-9)(х-(-4))=(13х-117)(х+4)=13х²+52х-117х-468=13х²-65х-468.
13х²-65х-468=0.
(Если разделим на 13, то есть а=1 получим х²-5х-36=0 -тоже ответ).
Попробуйте сами- это интересно и ответ будет только Ваш.
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)