Вычислите, какую работу A производит сила F(-3; 4; 7), когда ее точка приложения, двигаясь прямолинейно, перемещается из положения M(5; -1; 2) в положение N(2; 1; 3).
(2+a)x^2+(1-a)x+a+5=0 Рассмотрим несколько ситуаций: 1)если старший коэффициент при x^2=0 ( при а=-2): 0*x^2+3x-2+5=0 3x+3=0 3x=-3 x=-1 Значит, a=-2 нам подходит 2) если средний коэффициент равен нулю ( при а=1): 3x^2+0*x+1+5=0 3x^2+6=0 3x^2=-6 - решений нет, значит а=1 нам не подходит. 3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля: D= (1-a)^2-4(2+a)(a+5)>=0 1-2a+a^2-4(2a+10+a^2+5a)>=0 1-2a+a^2-4(a^2+7a+10)>=0 1-2a+a^2-4a^2-28a-40>=0 -3a^2-30a-39>=0 3a^2+30a+39<=0 | :3 a^2+10a+13<=0 a^2+10a+13=0 D=10^2-4*1*13=48 a1=(-10-4V3)/2=-5-2V3 a2=-5+2V3
По теореме Виета сумма и произведение корней приведенного уровнения вида : x²+px+q = 0, где p = x1 + x2 ( коэффициент p имеет противоположный знак, т.е. если p = +18, то сума корней уравнения x1 +x2 будет равна -18) и q = x1*x2. 1) x²+18x-11 = 0 сумма корней x1 + x2 = -18; 2) x²+27x-24 = 0 произведение корней x1 * x2 = -24. Сумма и произведение неприведенных уравнений вида : ax²+bx+c = 0, сумма корней x1 + x2 = -b/a, произведение корней x1*x2 = c/a. 3) 5x²+10x-3 = 0 сумма корней x1+x2 = -10/5 = -2; 4) 3x²-16x+9 = 0 произведение корней x1*x2 = 9/3 = 3. 5) x²+px-16=0 допустим x1 = 8 в этом приведенном уравнении можно найти произведение корней, ведь как мы знаем x1*x2 = q следовательно, 8*x2 = -16 x2 = -16/8 = -2 вот мы нашли второй корень, теперь найдём коэффициент p, т.е. сумму корней x1+x2 = -p 8-2 = -6 ответ: x2 = -2; p = -6. Можно проверить подставив это в уравнение.
Рассмотрим несколько ситуаций:
1)если старший коэффициент при x^2=0 ( при а=-2):
0*x^2+3x-2+5=0
3x+3=0
3x=-3
x=-1
Значит, a=-2 нам подходит
2) если средний коэффициент равен нулю ( при а=1):
3x^2+0*x+1+5=0
3x^2+6=0
3x^2=-6 - решений нет, значит а=1 нам не подходит.
3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля:
D= (1-a)^2-4(2+a)(a+5)>=0
1-2a+a^2-4(2a+10+a^2+5a)>=0
1-2a+a^2-4(a^2+7a+10)>=0
1-2a+a^2-4a^2-28a-40>=0
-3a^2-30a-39>=0
3a^2+30a+39<=0 | :3
a^2+10a+13<=0
a^2+10a+13=0
D=10^2-4*1*13=48
a1=(-10-4V3)/2=-5-2V3
a2=-5+2V3
+[-5-2V3]-[-5+2V3]+
"-2" - входит в этот промежуток
ответ: x e [-5-2V3] U [-5+2V3]
1) x²+18x-11 = 0
сумма корней x1 + x2 = -18;
2) x²+27x-24 = 0
произведение корней x1 * x2 = -24.
Сумма и произведение неприведенных уравнений вида : ax²+bx+c = 0, сумма корней x1 + x2 = -b/a, произведение корней x1*x2 = c/a.
3) 5x²+10x-3 = 0
сумма корней x1+x2 = -10/5 = -2;
4) 3x²-16x+9 = 0
произведение корней x1*x2 = 9/3 = 3.
5) x²+px-16=0
допустим x1 = 8
в этом приведенном уравнении можно найти произведение корней, ведь как мы знаем x1*x2 = q
следовательно,
8*x2 = -16
x2 = -16/8 = -2
вот мы нашли второй корень, теперь найдём коэффициент p, т.е. сумму корней x1+x2 = -p
8-2 = -6
ответ: x2 = -2; p = -6.
Можно проверить подставив это в уравнение.