Многочлен третьей степени имеет вид f(x)=ax³+bx²+cx+d f(0)=d=0 f(1)=a+b+c=3 f(2)=8a+4b+2c=0 f(3)=27a+9b+3c=0 Теперь надо решить систему из трех последних уравнений: Из 1-го ⇒c=3-a-b Подставляем во 2-ое и получаем после приведения подобных: 3a-b+3=0 ⇒b=3a+3⇒ c=3-a-3a-3=-4a Подставляем c и b в 3-е уравнение и получается a=-4/7 ⇒b=3a+3=9/7 и c=-4a=-4*(-4/7)=16/7 Получилось: a=-4/7 b=9/7 c=16/7 d=0 Многочлен имеет вид: (-4/7)x³+9/7x²+16/7=0 Или 4x³-9x²-16=0 Здесь следовательно коэффициенты будут 4, -9, -16 и 0. Выбирай любое решение, можно оставить первое.
f(0)=d=0
f(1)=a+b+c=3
f(2)=8a+4b+2c=0
f(3)=27a+9b+3c=0
Теперь надо решить систему из трех последних уравнений:
Из 1-го ⇒c=3-a-b
Подставляем во 2-ое и получаем после приведения подобных: 3a-b+3=0 ⇒b=3a+3⇒ c=3-a-3a-3=-4a
Подставляем c и b в 3-е уравнение и получается a=-4/7 ⇒b=3a+3=9/7 и c=-4a=-4*(-4/7)=16/7
Получилось:
a=-4/7
b=9/7
c=16/7
d=0
Многочлен имеет вид:
(-4/7)x³+9/7x²+16/7=0
Или
4x³-9x²-16=0
Здесь следовательно коэффициенты будут 4, -9, -16 и 0. Выбирай любое решение, можно оставить первое.