Всего существует 10 цифр : 0,1,2,3,4,5,6,7,8,9 Две цифры 1 и 2 - "заняты". Остаётся ровно 8 цифр (10-2=8).
Начинаем составлять трёхзначные цифры. Пусть место сотен займёт цифра 1 (один вариант), место десятков - цифра 2 (один вариант), тогда на место единиц можно будет поставить любую из восьми оставшихся цифр (8 вариант). Перемножаем полученные варианты получаем 1*1*8 = 8 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, аналогично: Пусть место сотен займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место десятков можно будет поставить любую из восьми оставшихся цифр (8 вариант). Перемножаем полученные варианты получаем 1*8*1= 8 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, Пусть место десятков займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место сотен можно будет поставить любую из семи оставшихся цифр - ноль нельзя ставить на место сотен (7 вариант). Перемножаем полученные варианты получаем 7*1*1 = 7 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*7=14 таких чисел.
Теперь осталось сложить все полученные результаты: 16+16+14=46 чисел
Число при делении на 5 дает в остатке 3 только если оно заканчивается на 3 или на 8. Докажем что ни одно целое число в квадрате не заканчивается ни на 3, ни на 8.
если число закачивается на 0, то в квадрате оно заканчивается на 0 если число закачивается на 1, то в квадрате оно заканчивается на 1 если число закачивается на 2, то в квадрате оно заканчивается на 4 если число закачивается на 3, то в квадрате оно заканчивается на 9 если число закачивается на 4, то в квадрате оно заканчивается на 6 если число закачивается на 5, то в квадрате оно заканчивается на 5 если число закачивается на 6, то в квадрате оно заканчивается на 6 если число закачивается на 7, то в квадрате оно заканчивается на 9 если число закачивается на 8, то в квадрате оно заканчивается на 4 если число закачивается на 9, то в квадрате оно заканчивается на 1
Две цифры 1 и 2 - "заняты". Остаётся ровно 8 цифр (10-2=8).
Начинаем составлять трёхзначные цифры.
Пусть место сотен займёт цифра 1 (один вариант), место десятков - цифра 2 (один вариант), тогда на место единиц можно будет поставить любую из восьми оставшихся цифр (8 вариант).
Перемножаем полученные варианты получаем 1*1*8 = 8 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, аналогично:
Пусть место сотен займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место десятков можно будет поставить любую из восьми оставшихся цифр (8 вариант).
Перемножаем полученные варианты получаем 1*8*1= 8 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее,
Пусть место десятков займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место сотен можно будет поставить любую из семи оставшихся цифр - ноль нельзя ставить на место сотен (7 вариант).
Перемножаем полученные варианты получаем 7*1*1 = 7 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*7=14 таких чисел.
Теперь осталось сложить все полученные результаты:
16+16+14=46 чисел
ответ: 46 чисел
если число закачивается на 0, то в квадрате оно заканчивается на 0
если число закачивается на 1, то в квадрате оно заканчивается на 1
если число закачивается на 2, то в квадрате оно заканчивается на 4
если число закачивается на 3, то в квадрате оно заканчивается на 9
если число закачивается на 4, то в квадрате оно заканчивается на 6
если число закачивается на 5, то в квадрате оно заканчивается на 5
если число закачивается на 6, то в квадрате оно заканчивается на 6
если число закачивается на 7, то в квадрате оно заканчивается на 9
если число закачивается на 8, то в квадрате оно заканчивается на 4
если число закачивается на 9, то в квадрате оно заканчивается на 1
все, вариантов не осталось. Доказано.