№1
2) -6 + 4 = -2
3) 6x4 - 30x2 + 36x
4) 12x2 + 4x - 40
5) 2y3 + 8y2 - 2y - 24
№2
1) m(-24 * 5m)
2) -2a2 + 25a - 41
№3
1) (x2 - 3)(x3 + 4)
2) (3x - 4)(9x2 + 2)
№4
При х = 1 и у = 0,45 равно - 4,7
№5
1) x₁ = 0, x₂ = - 1/2
2) x₁ = 0, x₂ = 7
Объяснение:
2) (7x2 - 6x - 6) - (7x2 - 6x - 4) = -6x - 6 + 6x + 4 = -6 + 4 = -2
3) 6x * (x3 - 5x + 6) = 6x4 - 6x * 5x + 6x * 6 = 6x4 - 30x2 + 6x * 6 = 6x4 - 30x2 + 36x
4) (3х – 5)(4х + 8) = 12x2 + 24x - 20x - 40 = 12x2 + 4x - 40
5) (2у + 6)(у2 + у - 4) = 2y3 + 2y2 - 8y + 6y2 + 6y - 24 = 2y3 + 8y2 - 2y - 24
1) 3m(2 + 5m) – 5m(6 + 2m) = m(6 + 15 - 30 - 10m) = m(-24 + 15m - 10m) = m(-24 * 5m)
2) 4(3a - 5) – (a – 3)(2a – 7) = 12a-20-(2a2 - 7a - 6a + 21) = 12a - 20 - 2a2 +13a - 21 = 25a - 41 - 2a2 = -2a2 + 25a - 41
№3 (по формуле x2-3)
1) х5 - 3х3 + 4х2 - 12 = (x2 - 3)(x3 + 4)
2) 27х3 - 36х2 + 6х - 8 = (3x - 4)(9x2 + 2)
18ху + 6х – 24у – 8 при х = 1 и у = 0,45
18ху + 6х – 24у – 8 = 2(3x*(3y+1) - 4(3y+1)) = 2(3y+1)(3x-4)
Если x = 1, y = 0,45, то 2(3*0,45+1)(3*1-4) = - 4,7
1) 12х2 + 6х = 0
6x(2x+1) = 0
x(2x+1) = 0
x = 0
2x + 1 = 0
x = - 1/2
ответ: x₁ = 0, x₂ = - 1/2
2) 35х - 5х2 = 0
5x(7-x) = 0
x(7-x) = 0
7 - x = 0
x = 7
ответ: x₁ = 0, x₂ = 7
ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
1
cosx=
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
=cos
6
π
=sin
sin(x+
)=
x+
=
4
+2πn
x=−
+
x=
12
=π−
3π
7π
№1
2) -6 + 4 = -2
3) 6x4 - 30x2 + 36x
4) 12x2 + 4x - 40
5) 2y3 + 8y2 - 2y - 24
№2
1) m(-24 * 5m)
2) -2a2 + 25a - 41
№3
1) (x2 - 3)(x3 + 4)
2) (3x - 4)(9x2 + 2)
№4
При х = 1 и у = 0,45 равно - 4,7
№5
1) x₁ = 0, x₂ = - 1/2
2) x₁ = 0, x₂ = 7
Объяснение:
№1
2) (7x2 - 6x - 6) - (7x2 - 6x - 4) = -6x - 6 + 6x + 4 = -6 + 4 = -2
3) 6x * (x3 - 5x + 6) = 6x4 - 6x * 5x + 6x * 6 = 6x4 - 30x2 + 6x * 6 = 6x4 - 30x2 + 36x
4) (3х – 5)(4х + 8) = 12x2 + 24x - 20x - 40 = 12x2 + 4x - 40
5) (2у + 6)(у2 + у - 4) = 2y3 + 2y2 - 8y + 6y2 + 6y - 24 = 2y3 + 8y2 - 2y - 24
№2
1) 3m(2 + 5m) – 5m(6 + 2m) = m(6 + 15 - 30 - 10m) = m(-24 + 15m - 10m) = m(-24 * 5m)
2) 4(3a - 5) – (a – 3)(2a – 7) = 12a-20-(2a2 - 7a - 6a + 21) = 12a - 20 - 2a2 +13a - 21 = 25a - 41 - 2a2 = -2a2 + 25a - 41
№3 (по формуле x2-3)
1) х5 - 3х3 + 4х2 - 12 = (x2 - 3)(x3 + 4)
2) 27х3 - 36х2 + 6х - 8 = (3x - 4)(9x2 + 2)
№4
18ху + 6х – 24у – 8 при х = 1 и у = 0,45
18ху + 6х – 24у – 8 = 2(3x*(3y+1) - 4(3y+1)) = 2(3y+1)(3x-4)
Если x = 1, y = 0,45, то 2(3*0,45+1)(3*1-4) = - 4,7
№5
1) 12х2 + 6х = 0
6x(2x+1) = 0
x(2x+1) = 0
x = 0
2x + 1 = 0
x = 0
x = - 1/2
ответ: x₁ = 0, x₂ = - 1/2
2) 35х - 5х2 = 0
5x(7-x) = 0
x(7-x) = 0
x = 0
7 - x = 0
x = 0
x = 7
ответ: x₁ = 0, x₂ = 7
ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
2
1
cosx=
2
2
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
2
3
=cos
6
π
2
1
=sin
6
π
sin(x+
6
π
)=
2
2
x+
6
π
=
4
π
+2πn
x=−
6
π
+
4
π
+2πn
x=
12
π
+2πn
x+
6
π
=π−
4
π
+2πn
x+
6
π
=
4
3π
+2πn
x=−
6
π
+
4
3π
+2πn
x=
12
7π
+2πn