В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
николь43
николь43
11.02.2021 07:05 •  Алгебра

Вычислите площадь фигуры, ограниченной линиями у=х²+1 и у=7-х

Показать ответ
Ответ:
Zelka20199
Zelka20199
05.10.2020 12:24
Сначала найдем точки пересечения, чтобы узнать границы фигуры.
x^2 + 1 = 7 - x
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
Границы: -3 и 2
Прямая y = 7 - x лежит выше параболы, поэтому вычитаем из нее.
\int\limits^2_{-3} {(7 - x - x^2 - 1)} \, dx = \int\limits^2_{-3} {(6 - x - x^2)} \, dx =(6x- \frac{x^2}{2} - \frac{x^3}{3} )|^2_{-3}=
=(6*2- \frac{2^2}{2} - \frac{2^3}{3} )-(6(-3)- \frac{(-3)^2}{2} - \frac{(-3)^3}{3} )=
=12-2- \frac{8}{3} +18+ \frac{9}{2} -9=10+9- \frac{16}{6} + \frac{27}{6} =19 \frac{11}{6} =20 \frac{5}{6}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота