Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
х(-15х-1)=0
х₁=0 или -15х-1=0
-15х=1
х₂=-1/15
ОТВЕТ: 0 или -1/15
2.9x²-4x=0
х(9х-4)=0
х₁=0 или 9х-4=0
х₂=4/9
ОТВЕТ: 0 или 4/9
3.7x-2x² = 0
х(7-2х)=0
х₁=0 или 7-2х=0
х₂=3,5
ОТВЕТ: 0 или 3,5
4.3x²=10x
3х²-10х=0
х(3х-10)=0
х₁=0 или 3х-10=0
х₂=10/3
ОТВЕТ: 0 или 10/3
5.x²=0,7x
х²-0,7х=0
х(х-0,7)=0
х₁=0 или х-0,7=0
х₂=0,7
ОТВЕТ: 0 или 0,7
6.4x²-4x=22x
4х²-4х-22х=0
4х²-26х=0
2х(2х-13)=0
х₁=0 или 2х-13=0
х₂=13/2
ОТВЕТ: 0 или 13/2
7.4x²-x=x+x²-4x
4х²-х²-х+3х=0
3х²+2х=0
х(3х+2)=0
х₁=0 или 3х+2=0
х₂=-2/3
ОТВЕТ: 0 или -2/3
8. 8x²-4x+1=1-x
8х²-4х+1-1+х=0
8х²-3х=0
х(8х-3)=0
х₁=0 или 8х-3=0
х₂=3/8
ОТВЕТ: 0 или 3/8
9.2x²-5x=x(4x-1)
2x²-5x=4x²-х
4x²-2x²-х+5х=0
2х²+4х=0
2х(х+2)=0
х₁=0 или х+2=0
х₂=-2
ОТВЕТ: 0 или -2
10.x²-2(x-4)=4(5x+2)
х²-2х+8=20х+8
х²-2х+8-20х-8=0
х²-22х=0
х(х-22)=0
х₁=0 или х-22=0
х₂=22
ОТВЕТ: 0 или 22
принимать Х изменяясь в своей области определения . Кроме того важно
сразу отметить что если вы ищете аналитическую закономерность (виде
некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать
любой из стандартных методов интерполяции : линейную, дробно-
линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора
по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1;
многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2-
подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3
а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений:
P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1;
P(X2)=1+A1*1+A2*1*1=2
P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк
Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2
Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости
между X и Y. Естественно этот результат не единственен.
Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»