Вычислите производную функции f(x) и ее значения в точке x0: a) f(x) =x^2(x-1), x0=-1; b) f(x) =3x(x+1), x0=-2/3; в) f(x) =2x+1/x, x0=-1; г) f(x) =x+1/x-2, x0=1
2.17. из трехзначных а 5 делятся 100, 105,110; 115..,995
Пусть всего n чисел делится на 5, тогда увидев, что их можно посчитать с формулы n- го члена арифметической прогрессии, получим aₙ=a₁+d*(n-1), где а₁=100; aₙ=995, d=5, найдем n. подставим данные в формулу. получим
995=100+5*(n-1); 199=20=n-1⇒n=199+1-20=180
значит, трёхзначных чисел, делящихся на 5, 180.
Аналогично найдем количество трёхзначных чисел, делящихся на 7.
105, 112, 119...,994; а₁=105; aₙ=994, d=7.
994=105+7*(n-1); n-1=142-15; n=128
значит, трёхзначных чисел, делящихся на 7, 128.
на два делятся четные. Всего 999-99=900 трехзначных, половина из них четные. т.е. четных 450
Тогда общее количество искомых чисел, 450+180+128=758
2.17. из трехзначных а 5 делятся 100, 105,110; 115..,995
Пусть всего n чисел делится на 5, тогда увидев, что их можно посчитать с формулы n- го члена арифметической прогрессии, получим aₙ=a₁+d*(n-1), где а₁=100; aₙ=995, d=5, найдем n. подставим данные в формулу. получим
995=100+5*(n-1); 199=20=n-1⇒n=199+1-20=180
значит, трёхзначных чисел, делящихся на 5, 180.
Аналогично найдем количество трёхзначных чисел, делящихся на 7.
105, 112, 119...,994; а₁=105; aₙ=994, d=7.
994=105+7*(n-1); n-1=142-15; n=128
значит, трёхзначных чисел, делящихся на 7, 128.
на два делятся четные. Всего 999-99=900 трехзначных, половина из них четные. т.е. четных 450
Тогда общее количество искомых чисел, 450+180+128=758
Давайте решение уравнения -9(8 - 9x) = 4x + 5 начнем с того, что откроем скобки.
Для этого применим дистрибутивный закон умножения:
-9 * 8 - 9 * (-9x) = 4x + 5;
-72 + 81x = 4x + 5;
Далее мы собираем в разных частях уравнения слагаемые с переменными и без.
81x - 4x = 5 + 72;
Приводим подобные в обеих частях полученного равенства:
x(81 - 4) = 77;
77x = 77;
Ищем неизвестный множитель:
x = 77 : 77;
x = 1.
Проверим верно ли мы нашли корень:
-9(8 - 9 * 1) = 4 * 1 + 5;
-9 * (-1) = 4 + 5;
9 = 9.
ответ: x = 1.
Объяснение: