Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды)
Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2.
По теореме Пифагора:
OB2=OE2+EB2
OB2=242+(20/2)2
OB2=576+100=676
OB=26
OB=OC=26 (т.к. OB и OC - радиусы окружности)
По теореме Пифагора:
OC2=CF2+FO2
OC2=(CD/2)2+FO2
262=(CD/2)2+102
676=(CD/2)2+100
(CD/2)2=576
CD/2=24
CD=48
ответ: CD=48
а)x<-1
x²+x=-3x-3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3
x2=-1не удов усл
2)-1≤x<0
-x²-x=3x+3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3 не удов усл
3)x≥0
x²+x=3x+3
x²-2x-3=0
x1+x2=2 U x1*x2=-3
x1=-1не удов усл
x2=3
b
1)x²+x-3=-x
x²+2x-3=0
x1+x2=-2 U x1*x2=-3
x1=-3 не удов усл
x2=1
2)x²+x-3=x
x²-3=0
х=-√3 не удов усл
х=√3
c
1)x<0
-x-x+2=4
-2x=2
x=-1
2)0≤x≤2
x-x+2=4
2=4
нет решения
3)x≥2
x+x-2=4
2x=6
x=3
2
|x²+2x|≥2-x²
1)x<-2
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈(-∞;-2)
2)-2≤x<0
-x²-2x≥2-x²
x≤-1
x∈[-2;-1]
3)x≥0
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈[(-1+√5)/2 ;∞)
ответ x∈(-∞;-1] U [(-1+√5)/2 ;∞)