1.Функция -отношение между элементами, при котором изменение в одном элементе влечёт изменение в другом.Область определения функции-множество, на котором задаётся функция.
2. Начальная функция это y0. Неопределенный интеграл-это совокупность всех первообразных данной функции.
Свойства неопределенного интеграла
1)Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2)Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3)Постоянный множитель можно вынести из-под знака интеграла, т.е. если то
4)Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности, т.е.
Интегрирование- название, данное ряду приемов, используемых для вычисления различных ИНТЕГРАЛОВ.
3x(x+4) ≤0 (x-2) решим методом интервалов значения х обращающие числитель и знаменатель в 0 это х={-4, 0, 2} рассмотрим знак выражения при х принадлежащих интервалам 1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак - 2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак + 3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак - 4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак + выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим х∈ (-∞;-4]U[0;2)
Объяснение:
1.Функция -отношение между элементами, при котором изменение в одном элементе влечёт изменение в другом.Область определения функции-множество, на котором задаётся функция.
2. Начальная функция это y0. Неопределенный интеграл-это совокупность всех первообразных данной функции.
Свойства неопределенного интеграла
1)Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2)Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3)Постоянный множитель можно вынести из-под знака интеграла, т.е. если то
4)Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности, т.е.
Интегрирование- название, данное ряду приемов, используемых для вычисления различных ИНТЕГРАЛОВ.
3.
≤0
(x-2)
решим методом интервалов
значения х обращающие числитель и знаменатель в 0
это х={-4, 0, 2}
рассмотрим знак выражения при х принадлежащих интервалам
1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак -
2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак +
3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак -
4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак +
выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим
х∈ (-∞;-4]U[0;2)