построить график функции и описать свойства у=2(х-3)(х+1)
Точки пересечения с осью Х
х-3=0 х=3
х+1=0 х=-1 вершина лежит посредине этого отрезка.
Значит Х вершины=(3-1)/2=1 У вершины равен 2(1-3)(1+1)= -8
У этой параболы ветви вверх (поскольку х*х не имеет минуса перед собой),значит есть минимум в вершине (1;-8). Ось у пересекается в точке 2(0-3)(0+1)=6 (0;-6)
Функция убывает слева от вершины х∠1
возрастает справа от вершины 1∠х
отрицательные значения при х между точками пересечения с осью Х. (нижняя часть параболы под осью) -1∠х∠3
Положительные значения при Х правее правой и левее левой точки.
х∠-1 или 3∠х функция положительная.
график строим симметрично оси ,проходящей через вершину. имеем точку вершины (1;-8) точку на оси у (0;-6) точку на оси х.(-1;0) справа имеем точку на оси х=3 точка 0;-6 на 1 клеточку левее оси,значит такая же точка будет и справа. (2;-6) плавно соеденяешь эти точки,получаешь график.
из того, что это ромб, мы понимаем, что стороны АВ = ВС
аналогично считаем ВС
и теперь
мы нашли координаты точки В(0;3)
теперь мы можем провести прямую через точки A(5;8) и В(0;3)
мы будем проводить и ещё прямые. я здесь распишу подробно как найти уравнение прямой, проходящей через две точки. дальше буду вывод уравнения опускать. писать только само уравнение
итак, прямая через точки А(5;8) и В(0;3)
мы получили каноническое уравнение прямой
из него легко получить уравнение прямой с угловым коэффициентом:
y = x + 3
теперь мы знаем, что поскольку это ромб, то АВ║CD
тогда уравнение прямой CD (через точки С и D) имеет тот же коэффициент угла наклона (коэффициент при х), что и прямая АВ, т.е. это уравнение вида
у=x+b
и эта прямая проходит через точку С(1; -4), значит координаты точки С должны удовлетворять уравнению прямой. подставим координаты точки С в уравнение
-4 = 1+b ⇒ b = -5
и тогда мы имеем уравнение прямой CD
у = х - 5
аналогично найдем уравнение прямой АD
сначала уравнение прямой ВС (по двум точкам)
у = -7х +3
а потом уравнение ║ ей прямой AD
y = -7x +b она проходит через точку А
8 = (-7)*5+ b b = 43
уравнение прямой AD
y = -7x + 43
теперь мы можем найти координаты точки D как пересечение прямых ВС и CD
Объяснение:
построить график функции и описать свойства у=2(х-3)(х+1)
Точки пересечения с осью Х
х-3=0 х=3
х+1=0 х=-1 вершина лежит посредине этого отрезка.
Значит Х вершины=(3-1)/2=1 У вершины равен 2(1-3)(1+1)= -8
У этой параболы ветви вверх (поскольку х*х не имеет минуса перед собой),значит есть минимум в вершине (1;-8). Ось у пересекается в точке 2(0-3)(0+1)=6 (0;-6)
Функция убывает слева от вершины х∠1
возрастает справа от вершины 1∠х
отрицательные значения при х между точками пересечения с осью Х. (нижняя часть параболы под осью) -1∠х∠3
Положительные значения при Х правее правой и левее левой точки.
х∠-1 или 3∠х функция положительная.
график строим симметрично оси ,проходящей через вершину. имеем точку вершины (1;-8) точку на оси у (0;-6) точку на оси х.(-1;0) справа имеем точку на оси х=3 точка 0;-6 на 1 клеточку левее оси,значит такая же точка будет и справа. (2;-6) плавно соеденяешь эти точки,получаешь график.
Объяснение:
у нас по условию есть точки
А(5;8)
В(0; у) - лежит на оси оу
С(1; -4)
из того, что это ромб, мы понимаем, что стороны АВ = ВС
аналогично считаем ВС
и теперь
мы нашли координаты точки В(0;3)
теперь мы можем провести прямую через точки A(5;8) и В(0;3)
мы будем проводить и ещё прямые. я здесь распишу подробно как найти уравнение прямой, проходящей через две точки. дальше буду вывод уравнения опускать. писать только само уравнение
итак, прямая через точки А(5;8) и В(0;3)
мы получили каноническое уравнение прямой
из него легко получить уравнение прямой с угловым коэффициентом:
y = x + 3
теперь мы знаем, что поскольку это ромб, то АВ║CD
тогда уравнение прямой CD (через точки С и D) имеет тот же коэффициент угла наклона (коэффициент при х), что и прямая АВ, т.е. это уравнение вида
у=x+b
и эта прямая проходит через точку С(1; -4), значит координаты точки С должны удовлетворять уравнению прямой. подставим координаты точки С в уравнение
-4 = 1+b ⇒ b = -5
и тогда мы имеем уравнение прямой CD
у = х - 5
аналогично найдем уравнение прямой АD
сначала уравнение прямой ВС (по двум точкам)
у = -7х +3
а потом уравнение ║ ей прямой AD
y = -7x +b она проходит через точку А
8 = (-7)*5+ b b = 43
уравнение прямой AD
y = -7x + 43
теперь мы можем найти координаты точки D как пересечение прямых ВС и CD
x - 5 = -7x +43
8x = 48
x = 6; y = 1
мы нашли координаты точки D(6; 1)
итак, наши точки
А(5;8)
В(0; 3)
С(1;4)
D(6; 1)
теперь уравнение диагонали BD
уравнение прямой, проходящей через две точки
или
ответ
уравнение диагонали BD
точка В(0; 3)
точка D(6; 1)
на графике изображены все прямые и все точки