Перепишем неравенство в виде /x-a/<2-x². Это неравенство равносильно двойному неравенству x²-2<x-a<2-x², которое сводится к системе двух неравенств:
x²-2<x-a x-a<2-x²
Перепишем первое неравенство в виде x²-x+(a-2)<0. Для его решения решим квадратное уравнение x²-x+(a-2)=0. Дискриминант D=1-4*(a-2)= 9-4*a. Если D<0, то x²-x+(a-2)>0 при любых x, если D=0, то x²-x+(a-2)≥0, если D>0, то возможно выполнение неравенства x²-x+(a-2)<0. Значит, должно выполняться требование 9-4*a>0, откуда a<9/4.
Перепишем второе неравенство в виде x²+x-(a+2)<0. Составляем квадратное уравнение x²+x-(a+2)=0. Дискриминант D=1+4*(a+2)= 9+4*a. Если D<0, то x²+x-(a+2)>0, если D=0, то x²+x-(a+2)≥0, если D>0, то возможно выполнение неравенства x²+x-(a+2)²<0. Значит, должно выполняться требование 9+4*a>0, откуда a>-9/4. Отсюда -9/4<a<9/4.
(а²-1)х² + 2(а -1)х+2 > 0, перед нами неравенство не выше второй степени. нужно рассмотреть 2 случая: 1) Если данное неравенство квадратное (графиком квадратной функции является парабола), значит должно выполнятся два условия, чтобы неравенство было верно для любого х∈R. -Ветви параболы должны быть направлены вверх ( а²-1>0 ) -парабола должна находится выше оси х (D<0)
x∈(-∞;-3) U (1;+∞)
2 случай) если данное неравенство линейное, то есть а²-1=0, (а-1)(а+1)=0 а=1 или а=-1 подставляем 1 в неравенство: (1²-1)х² + 2(1 -1)х+2 > 0 2>0 - это верное неравенство, которое не зависит от х, значит а=1 входит в ответ.
подставляем -1: ((-1)²-1)х² + 2((-1)-1)х+2 > 0 -4х+2>0 -4x>-2 x<0.5 - это неравенство зависит от х, то есть верно только при некоторых значениях х, значит а=-1, не входит в ответ ОТВЕТ:x∈(-∞;-3) U [1;+∞)
x²-2<x-a
x-a<2-x²
Перепишем первое неравенство в виде x²-x+(a-2)<0. Для его решения решим квадратное уравнение x²-x+(a-2)=0. Дискриминант D=1-4*(a-2)=
9-4*a. Если D<0, то x²-x+(a-2)>0 при любых x, если D=0, то x²-x+(a-2)≥0, если D>0, то возможно выполнение неравенства x²-x+(a-2)<0. Значит, должно выполняться требование 9-4*a>0, откуда a<9/4.
Перепишем второе неравенство в виде x²+x-(a+2)<0. Составляем квадратное уравнение x²+x-(a+2)=0. Дискриминант D=1+4*(a+2)=
9+4*a. Если D<0, то x²+x-(a+2)>0, если D=0, то x²+x-(a+2)≥0, если D>0, то возможно выполнение неравенства x²+x-(a+2)²<0. Значит, должно
выполняться требование 9+4*a>0, откуда a>-9/4. Отсюда -9/4<a<9/4.
ответ: a∈ (-9/4;9/4).
нужно рассмотреть 2 случая:
1) Если данное неравенство квадратное (графиком квадратной функции является парабола), значит должно выполнятся два условия, чтобы неравенство было верно для любого х∈R.
-Ветви параболы должны быть направлены вверх ( а²-1>0 )
-парабола должна находится выше оси х (D<0)
x∈(-∞;-3) U (1;+∞)
2 случай) если данное неравенство линейное, то есть а²-1=0,
(а-1)(а+1)=0
а=1 или а=-1
подставляем 1 в неравенство:
(1²-1)х² + 2(1 -1)х+2 > 0
2>0 - это верное неравенство, которое не зависит от х, значит а=1 входит в ответ.
подставляем -1:
((-1)²-1)х² + 2((-1)-1)х+2 > 0
-4х+2>0
-4x>-2
x<0.5 - это неравенство зависит от х, то есть верно только при некоторых значениях х, значит а=-1, не входит в ответ
ОТВЕТ:x∈(-∞;-3) U [1;+∞)