Из условия задачи следует двойное неравенство 1150≤2ᵃ-2ᵇ≤2018, где а, в - неотрицательные целые числа.
Рассмотрим некоторые степени двойки: 2°=1, 2¹=2, 2²=4, 2³=8, 2⁴=16, 2⁵=32, 2⁶=64, 2⁷=128, 2⁸=256, 2⁹=512, 2¹°=1024, 2¹¹=2048, 2¹²=4096...
Из неравенства следует, что 1150<2ᵃ. Учитывая степени двойки получаем 2048≤2ᵃ. С другой стороны, если 2ᵃ>2048, то минимальное значение разности 2ᵃ-2ᵇ равно(минимальная разность между различными степенями двойки в данном случае достигается при b=a-1) 4096-2048=2048, что не удовлетворяет условию задачи. Значит 2ᵃ=2048. Тогда неравенство принимает вид 1150≤2048-2ᵇ≤2018 ↔-898≤-2ᵇ≤-30 ↔ 30≤2ᵇ≤898. Учитывая выписанные степени двойки, получаем 32≤2ᵇ≤512, то есть 5≤b≤9.
Тогда получаем 9-5+1=5 чисел: 2048-32, 2048-64, 2048-128, 2048-256 и 2048-512.
Из условия задачи следует двойное неравенство 1150≤2ᵃ-2ᵇ≤2018, где а, в - неотрицательные целые числа.
Рассмотрим некоторые степени двойки: 2°=1, 2¹=2, 2²=4, 2³=8, 2⁴=16, 2⁵=32, 2⁶=64, 2⁷=128, 2⁸=256, 2⁹=512, 2¹°=1024, 2¹¹=2048, 2¹²=4096...
Из неравенства следует, что 1150<2ᵃ. Учитывая степени двойки получаем 2048≤2ᵃ. С другой стороны, если 2ᵃ>2048, то минимальное значение разности 2ᵃ-2ᵇ равно(минимальная разность между различными степенями двойки в данном случае достигается при b=a-1) 4096-2048=2048, что не удовлетворяет условию задачи. Значит 2ᵃ=2048. Тогда неравенство принимает вид 1150≤2048-2ᵇ≤2018 ↔-898≤-2ᵇ≤-30 ↔ 30≤2ᵇ≤898. Учитывая выписанные степени двойки, получаем 32≤2ᵇ≤512, то есть 5≤b≤9.
Тогда получаем 9-5+1=5 чисел: 2048-32, 2048-64, 2048-128, 2048-256 и 2048-512.
ответ: 5 чисел
Квадратное уравнение имеет два различных действительных корня, когда его дискриминант положителен.
D/4 = 4m² - 1 + 2m - 4m² = 2m - 1
2m - 1 > 0 ⇔ m > ½
Найдем корни уравнения
[x₁ = 2m + √(2m - 1)
[x₂ = 2m - √(2m - 1)
Из условия, каждый корень больше единицы. Решим соответствующие неравенства.
1). 2m + √(2m - 1) > 1
√(2m - 1) > 1 - 2m
1.1) 1 - 2m > 0 ⇔ m < 1/2
2m - 1 > 1 - 4m + 4m²
4m² - 6m + 2 < 0
D/4 = 9 - 8 = 1
m₁ = (3 + 1)/4 = 1
m₂ = (3 - 1)/4 = 1/2
4(m - 1)(m - 1/2) < 0
m∈(1/2 ; 1)
Пересечение ∅
1.2) 1 - 2m < 0 ⇔ m > 1/2
m∈R
Пересечение m > 1/2
2). 2m - √(2m - 1) > 1
√(2m - 1) < 2m - 1
2.1) 2m - 1 > 0 ⇔ m > 1/2
2m - 1 < 4m² - 4m + 1
4m² - 6m + 2 > 0
4(m - 1)(m - 1/2) > 0
m∈(-∞;1/2)∪(1;∞)
Пересечение m > 1
2.2) 2m - 1 < 0 ⇒ ∅
Из всего этого можно утвердить, что m > 1