Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
(x-2)^(x²-6x+8)>(x-2)⁰
1. пусть х-2>1. x>3,
тогда x²-6x+8>0. x²-6x+8=0. x₁=2,x₂=4
+ - +
(2)(4)>x
x∈(-∞;2)U(4;∞)
/ / / / / / / / / / / / / / / /
(2)(3)(4)>x
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x∈(4;∞)
2. пусть 0<х-2<1, 2<x<3
тогда, x²-6x+8<0
x∈(2;4)
/ / / / / / / / / / / / / /
(2)(3)(4)>x
\ \ \ \ \ \ \
x∈(2;3)
ответ: x∈(2;3)U(4;∞)
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)