В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
danjaegorovru
danjaegorovru
01.11.2020 04:32 •  Алгебра

Вычислите значение производной функции f(x)=\sqrt{x}*(3x^2-4x)=[/tex] в точке x0=9 Напишите поджробное объяснение алгебра 10 кл

Показать ответ
Ответ:
sdsdsgttu
sdsdsgttu
07.09.2020 01:19

Объяснение:

f(x)=\sqrt{x} *(3x^2-4x)\\f'(x)= (\sqrt{x})'*(3x^2-4x)+\sqrt{x}*(3x^2-4x)'=\frac{3x^2-4x}{2\sqrt{x} } +\sqrt{x} (6x-4)\\f'(9)= \frac{3*81-4*9}{2*3}+3*(6*9-4)=34,5+150= 184,5

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота