1) Неверно, Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на КОСИНУС угла между ними. Это теорема косинусов.
Нам задана функция графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы) свойства:
∪ E(f): ∪ нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается. промежутки знакопостоянства: принимает только отрицательные значения на интервале: только положительные на интервале: функция монотонно убывает при x>-2 и при x<-2 функция не является ни четной, ни нечетной
функция непериодическая. функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.
1) Неверно, Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на КОСИНУС угла между ними. Это теорема косинусов.
2) Верно, по теореме Пифагора. 5^2 + 12^2 = 25 + 144 = 169 = 13^2
3) Да, треугольник со сторонами 5, 6, 7 остроугольный, по теореме косинусов.
5^2 + 6^2 = 25 + 36 = 61 > 7^2 = 49
Если сумма квадратов двух меньших сторон больше, чем квадрат наибольшей стороны, то треугольник остроугольный.
Если сумма равна квадрату наибольшей стороны, то прямоугольный.
Если же сумма меньше, чем квадрат наибольшей стороны, то тупоугольный.
4) Да, это верно, это теорема Пифагора.
графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы)
свойства:
∪
E(f): ∪
нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается.
промежутки знакопостоянства:
принимает только отрицательные значения на интервале:
только положительные на интервале:
функция монотонно убывает при x>-2 и при x<-2
функция не является ни четной, ни нечетной
функция непериодическая.
функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.