В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Murzilka89
Murzilka89
02.07.2022 21:37 •  Алгебра

Вычислите
1) (-⁶√17)⁶=

2) 3•³√-4 17/27=

Показать ответ
Ответ:
Yanalime2006
Yanalime2006
23.12.2021 23:51
(x-1)(x+5)>0
Находим точки, в которых неравенство равно нулю:
x-1=0    x=1
x+5=0   x=-5
Наносим на прямую (-∞;+∞) эти точки:
-∞-51+∞
Получаем три диапазона: (-∞;-5)   (-5;1)    (1;+∞)
Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона:
(-∞;-5)  Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0  ⇒  +
(-5;1)  Подставим число этого диапазона 0:  (0-1)(0+5)=-1*5=-5<0  ⇒  -
(1;+∞)  Подставим 2:  (2-1)(2+5)=1*7=7>0   ⇒  +
-∞+-5-1++∞   ⇒
x∈(-∞;-5)U(1;+∞).
0,0(0 оценок)
Ответ:
незнайка1185
незнайка1185
21.11.2020 05:13
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки.
Решаем две системы
1) \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq 0}} \right. \\ \\ \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq log_{5x-9}1}} \right.
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
2) \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq 0}} \right. \\ \\ \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq log_{5x-9}1}} \right.

решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т.  2 а) х≥20/11.

б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11

О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота