Пусть первое число, пропорциональное числу 1 равно х, тогда второе число, пропорциональное числу 2 равно 2х. Т.к. сумма трёх чисел равна 18,то третье число равно 18-х-2х=18-3х По условию, произведение этих трёх чисел должно принимать наибольшее значение. Применим производную для решения задачи: f(x)=x*2x*(18-3x)=2x²(18-3x)=36x²-6x³ f `(x)=(36x²-6x³)`=36*2x-6*3x²=72x-18x²=18x(4-x) f `(x)=0 при 18x(4-x)=0 - + - 04 min max ↓ ↑ ↓ x=4 2x=2*4=8 18-4-8=6
тогда второе число, пропорциональное числу 2 равно 2х.
Т.к. сумма трёх чисел равна 18,то третье число равно 18-х-2х=18-3х
По условию, произведение этих трёх чисел должно принимать наибольшее значение. Применим производную для решения задачи:
f(x)=x*2x*(18-3x)=2x²(18-3x)=36x²-6x³
f `(x)=(36x²-6x³)`=36*2x-6*3x²=72x-18x²=18x(4-x)
f `(x)=0 при 18x(4-x)=0
- + -
04
min max
↓ ↑ ↓
x=4
2x=2*4=8
18-4-8=6
ответ: 4; 8; 6 - искомые числа
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)