Выделив полный квадрат, найдите наименьшее значение выражения y^2-2y+10y Найдите наибольшее значение выражения 6(7x-11)-9(x+2)(x-2) Найдите наибольшее значение выражения -2-x^2+6x и значение переменной, при котором оно достигается.
Ну тут все просто) Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям) а) x=3, y=1 Проверка: 3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения б) x=6, y=2 Проверка: 6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго в) x=5, y=3 Проверка: 5-3=2 и 5+3=8, являются решением и первого, и второго уравнения г) x=8, y=2 Проверка: 8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.
Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям)
а) x=3, y=1
Проверка:
3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения
б) x=6, y=2
Проверка:
6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго
в) x=5, y=3
Проверка:
5-3=2 и 5+3=8, являются решением и первого, и второго уравнения
г) x=8, y=2
Проверка:
8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго