√7 + √10 и √3 + √19 Возведём в квадрат: 7 + 2√70 + 10 и 3 + 2√57 + 19 17 + 2√70 и 22 + 2√57 Перенесём 17 в одну сторону, а 2√59 в другую: 22 - 17 и 2√70 - 2√57 5 и 2√70 - 2√57 Возведём ещё раз в квадрат: 25 и 4·70 - 4√3990 + 4·59 25 и 516 - 4√3990 Перенесём 516 в другую сторону: 25 - 516 и -4√3390 -491 и -√63840 -√241081 и -√63840 Второе число больше первого, т.к. оба числа отрицательные, а второе больше по модулю. ответ: второе число больше.
1) Используя формулу n-го члена арифметической прогрессии , вычислим двадцатый член этой прогрессии:
ответ: 30.
2) Формула суммы первых n членов арифметической прогрессии следующая:
Найдем же сначала восемнадцатый член арифметической прогрессии
ответ: 656.
3) Первый член:
Второй член:
Третий член:
Как видно, каждый последующий член уменьшается на (-5),т.е. это разность d = -5, следовательно, последовательность является арифметической прогрессией.
4) Используя n-ый член арифметической прогрессии, найдем ее разность
Да, является арифметической прогрессией.
5) Данная последовательность является арифметической прогрессии с первым членом и разностью прогрессии d=1
Всего таких членов не трудно посчитать по формуле n-го члена арифметической прогрессии:
То есть, нужно посчитать сумму первых 91 членов арифметической прогрессии
Возведём в квадрат:
7 + 2√70 + 10 и 3 + 2√57 + 19
17 + 2√70 и 22 + 2√57
Перенесём 17 в одну сторону, а 2√59 в другую:
22 - 17 и 2√70 - 2√57
5 и 2√70 - 2√57
Возведём ещё раз в квадрат:
25 и 4·70 - 4√3990 + 4·59
25 и 516 - 4√3990
Перенесём 516 в другую сторону:
25 - 516 и -4√3390
-491 и -√63840
-√241081 и -√63840
Второе число больше первого, т.к. оба числа отрицательные, а второе больше по модулю.
ответ: второе число больше.
1) Используя формулу n-го члена арифметической прогрессии , вычислим двадцатый член этой прогрессии:
ответ: 30.
2) Формула суммы первых n членов арифметической прогрессии следующая:
Найдем же сначала восемнадцатый член арифметической прогрессии
ответ: 656.
3) Первый член:
Второй член:
Третий член:
Как видно, каждый последующий член уменьшается на (-5),т.е. это разность d = -5, следовательно, последовательность является арифметической прогрессией.
4) Используя n-ый член арифметической прогрессии, найдем ее разность
Да, является арифметической прогрессией.
5) Данная последовательность является арифметической прогрессии с первым членом и разностью прогрессии d=1
Всего таких членов не трудно посчитать по формуле n-го члена арифметической прогрессии:
То есть, нужно посчитать сумму первых 91 членов арифметической прогрессии
ответ: 4277.