Объяснение:
1) cos3x-sin3x=0
(√2/2)cos3x-(√2/2)sin3x=0
cos(π/4)cos3x-sin(π/4)sin3x=0
cos(3x+π/4)=0
3x+π/4=π/2+kπ
3x=π/2-π/4+kπ
3x=π/4+kπ
x=π/12+kπ/3, k∈Z
ответ: x=π/12+kπ/3, k∈Z
2) sin(5x)-√3cos(5x)=0
0,5sin(5x)-0,5√3cos(5x)=0
cos(π/3)sin(5x)-sin(π/3)cos(5x)=0
sin(5x-π/3)=0
5x-π/3=kπ
5x=π/3+kπ
x=π/15+kπ/5, k∈Z
ответ: x=π/15+kπ/5, k∈Z
3) 4sin(x/3)-7cos(x/3)=0
(4/√65)sin(x/3)-(7/√65)cos(x/3)=0
cosα=4/√65; α∈(0;π/2)⇒sinα=7/√65, α=arccos(4/√65)
cosαsin(x/3)-sinαcos(x/3)=0
sin(x/3-α)=0
x/3-α=kπ
x/3=α+kπ
x=3α+3kπ=3arccos(4/√65)+3kπ
ответ:x=3arccos(4/√65)+3kπ
4) 3sin²(x/5)-7sin(x/5)cos(x/5)+4cos²(x/5)=0
3sin²(x/5)/cos²(x/5)-7sin(x/5)cos(x/5)/cos²(x/5)+4cos²(x/5)/cos²(x/5)=0
3tg²(x/5)-7tg(x/5)+4=0; tg(x/5)=y
3y²-7y+4=0
D=49-48=1
y₁=(7-1)/6=1⇒tgx=1⇒x/5=π/4+kπ, x=5π/4+5kπ, k∈Z
y₂=(7+1)/6=4/3⇒tgx=4/3⇒x/5=arctg(4/3)+kπ⇒x=5arctg(4/3)+5π, k∈Z
ответ:x={5π/4+5kπ; 5arctg(4/3)+5π}, k∈Z
№2
1) 7sin²(x/3)-4sin(2x/3)+cos²(x/3)=0
7sin²(x/3)-8sin(x/3)cos(x/3)+cos²(x/3)=0
7sin²(x/3)/cos²(x/3)-8sin(x/3)cos(x/3)/cos²(x/3)+cos²(x/3)/cos²(x/3)=0
7tg²(x/3)-8tg(x/3)+1=0; tg(x/3)=y
7y²-8y+1=0
D=64-28=36
y₁=(8+6)/14=1⇒tgx=1⇒x/3=π/4+kπ, x=3π/4+3kπ, k∈Z
y₂=(8-6)/14=1/7⇒tgx=1/7⇒x/3=arctg(1/7)+kπ⇒x=3arctg(1/7)+3π, k∈Z
ответ:x={3π/4+3kπ; 3arctg(1/7)+3π}, k∈Z
2) (2sinx-cosx)/(cosx+3sinx)=1/4
4(2sinx-cosx)=cosx+3sinx
8sinx-4cosx-cosx-3sinx=0
5sinx-5cosx=0
5(sinx-cosx)=0
sinx=cosx
sinx/cosx=cosx)/cosx
tgx=1
x=π/4+kπ, k∈Z
ответ:x=π/4+kπ, k∈Z
x+4=2x -2x+3=2x-5
x-2x=-4 -2x-2x=-5-3
-x=-4 -4x=-8
x=4 x=2
y=4+4=8 y=2*2-5=-1
Точка пересечения (4;8) Точка пересечения (2; -1)
в)y=-x; y=3x-4 г)y=3x+2; y=-0,5x-5
-x=3x-4 3x+2=-0,5x-5
-x-3x=-4 3x+0,5x=-5-2
-4x=-4 3,5x=-7
x=1 x=-2
y=-x=-1 y=3*(-2)+2=-4
Точка пересечения (1; -1) Точка пересечения (-2; -4)
Объяснение:
1) cos3x-sin3x=0
(√2/2)cos3x-(√2/2)sin3x=0
cos(π/4)cos3x-sin(π/4)sin3x=0
cos(3x+π/4)=0
3x+π/4=π/2+kπ
3x=π/2-π/4+kπ
3x=π/4+kπ
x=π/12+kπ/3, k∈Z
ответ: x=π/12+kπ/3, k∈Z
2) sin(5x)-√3cos(5x)=0
0,5sin(5x)-0,5√3cos(5x)=0
cos(π/3)sin(5x)-sin(π/3)cos(5x)=0
sin(5x-π/3)=0
5x-π/3=kπ
5x=π/3+kπ
x=π/15+kπ/5, k∈Z
ответ: x=π/15+kπ/5, k∈Z
3) 4sin(x/3)-7cos(x/3)=0
(4/√65)sin(x/3)-(7/√65)cos(x/3)=0
cosα=4/√65; α∈(0;π/2)⇒sinα=7/√65, α=arccos(4/√65)
cosαsin(x/3)-sinαcos(x/3)=0
sin(x/3-α)=0
x/3-α=kπ
x/3=α+kπ
x=3α+3kπ=3arccos(4/√65)+3kπ
ответ:x=3arccos(4/√65)+3kπ
4) 3sin²(x/5)-7sin(x/5)cos(x/5)+4cos²(x/5)=0
3sin²(x/5)/cos²(x/5)-7sin(x/5)cos(x/5)/cos²(x/5)+4cos²(x/5)/cos²(x/5)=0
3tg²(x/5)-7tg(x/5)+4=0; tg(x/5)=y
3y²-7y+4=0
D=49-48=1
y₁=(7-1)/6=1⇒tgx=1⇒x/5=π/4+kπ, x=5π/4+5kπ, k∈Z
y₂=(7+1)/6=4/3⇒tgx=4/3⇒x/5=arctg(4/3)+kπ⇒x=5arctg(4/3)+5π, k∈Z
ответ:x={5π/4+5kπ; 5arctg(4/3)+5π}, k∈Z
№2
1) 7sin²(x/3)-4sin(2x/3)+cos²(x/3)=0
7sin²(x/3)-8sin(x/3)cos(x/3)+cos²(x/3)=0
7sin²(x/3)/cos²(x/3)-8sin(x/3)cos(x/3)/cos²(x/3)+cos²(x/3)/cos²(x/3)=0
7tg²(x/3)-8tg(x/3)+1=0; tg(x/3)=y
7y²-8y+1=0
D=64-28=36
y₁=(8+6)/14=1⇒tgx=1⇒x/3=π/4+kπ, x=3π/4+3kπ, k∈Z
y₂=(8-6)/14=1/7⇒tgx=1/7⇒x/3=arctg(1/7)+kπ⇒x=3arctg(1/7)+3π, k∈Z
ответ:x={3π/4+3kπ; 3arctg(1/7)+3π}, k∈Z
2) (2sinx-cosx)/(cosx+3sinx)=1/4
4(2sinx-cosx)=cosx+3sinx
8sinx-4cosx-cosx-3sinx=0
5sinx-5cosx=0
5(sinx-cosx)=0
sinx=cosx
sinx/cosx=cosx)/cosx
tgx=1
x=π/4+kπ, k∈Z
ответ:x=π/4+kπ, k∈Z