В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dsanavskiy77
dsanavskiy77
16.03.2023 17:52 •  Алгебра

Вынесите общий множитель со знаком плюс за скобки так, чтобы члены в скобках не имели общего множителя:
6x (22)−3x (19) −9x (16)
В скобках степень

Показать ответ
Ответ:
Vlada0904
Vlada0904
28.09.2022 16:47
\sqrt{3x-2} > x-2
ОДЗ
Так как арифметический квадратный корень не может быть отрицатеьным, то x-2 \geq 0
x \geq 2
Теперь мы имеем право левую и правую части возвести в квадрат
3x - 2 > x^2 - 4x - 4
x^2 - 7x - 2 < 0
Так как мы не можем неравенство приравнять к нулю введем функцию
y = x^2 - 7x - 2
D = b^2 - 4ac= 49 - 4*1*(-2)=57
x1=(7 + \sqrt{57} )/2
x2=(7 - \sqrt{57} )/2
Отбор корней
Чертим числовую прямую, отмечаем корни (x1 и x2), берем любое значение из получившихся 3-х промежутков. Там, где получившееся значение меньше 0, значит берем этот промежуток как предварительный ответ.
Производим отбор корней по ОДЗ
ответ: промежуток x∈ [2;(7+√57)/2).
Не могу начертить числовую прямую для более точного ответа.
0,0(0 оценок)
Ответ:
DenQ04a
DenQ04a
15.04.2021 19:11
Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота