Пусть (км) - расстояние между озером и селом.
_______________________________________________
, км/ч , ч , км
"Туда"
"Обратно"
Если общий путь занял ровно час, то (время "туда" + время "обратно" = час).
Теперь, конечно, решаем это уравнение:
Таким образом, расстояние от села к озеру (и, кстати, от озера к селу) составляет километров.
следующий: b1*q
третий: b1*q² (q > 0)
b1 + b1*q + b1*q² = 21
b1*(1+q+q²) = 21 ---> b1 = 21 / (1+q+q²)
(1 / b1) + (1 / (b1*q)) + (1 / (b1*q²)) = 7/12
(1 / b1)*(1 + (1/q) + (1/q²)) = 7/12
((1+q+q²) / 21)*((q²+q+1) / q²) = 7/12
(1+q+q²)² = (7/12) * 21q²
((1+q+q²) / q)² = 49/4
(1+q+q²) / q = 7/2 или (1+q+q²) / q = -7/2
2+2q+2q² = 7q или 2+2q+2q² = -7q
2q²-5q+2 = 0 или 2q²+9q+2 = 0
D=25-16=3² D=81-16=65
q1 = (5-3)/4 = 0.5 q3 = (-9-√65)/4 < 0
q2 = (5+3)/4 = 2 q4 = (-9+√65)/4 < 0
1) q = 1/2 --- убывающая последовательность
b1 = 21 / (1+0.5+0.25) = 21 / 1.75 = 12
b2 = 12*0.5 = 6
b3 = 6*0.5 = 3 их сумма = 21
(1/12) + (1/6) + (1/3) = (1/12) + (2/12) + (4/12) = 7/12
2) q = 2 --- возрастающая последовательность
b1 = 21 / (1+2+4) = 3
b2 = 3*2 = 6
b3 = 6*2 = 12 их сумма = 21
(1/12) + (1/6) + (1/3) = (1/12) + (2/12) + (4/12) = 7/12
Пусть (км) - расстояние между озером и селом.
_______________________________________________
, км/ч , ч , км
"Туда"
"Обратно"
_______________________________________________
Если общий путь занял ровно час, то (время "туда" + время "обратно" = час).
Теперь, конечно, решаем это уравнение:
Таким образом, расстояние от села к озеру (и, кстати, от озера к селу) составляет километров.
ответ: 6 километров.