Пусть х(км/ч) -скорость течения реки.
у(км/ч) -собственная скорость катера.
Тогда скорость катера по течению реки равна (х+у) км/ч,
а против течения (у-х) км/ч.
По условию по течению катер км), т.е. 5/3 х +5/3 у(км),
а против течения 24(км), т. е. 1,5 у -1,5 х (км).
(5/3 - это 1час 20мин.)
5/3 х +5/3 у =28 домножим на 3
1,5 у-1,5 х=24 домножим на 10
5х+5у=84
15у-15х=240 разделим на 3
5у-5х=80
Решим систему сложения двух уравнений:
10у = 164
5у-5х = 80
5у - 5х = 80
у = 16,4
5*16,4 - 5х = 80
у=16,4
-5 х = 80-82
-5 х = -2
х = 0,4
ответ: 0,4 (км/ч) - скорость течения реки
Пусть х(км/ч) -скорость течения реки.
у(км/ч) -собственная скорость катера.
Тогда скорость катера по течению реки равна (х+у) км/ч,
а против течения (у-х) км/ч.
По условию по течению катер км), т.е. 5/3 х +5/3 у(км),
а против течения 24(км), т. е. 1,5 у -1,5 х (км).
(5/3 - это 1час 20мин.)
5/3 х +5/3 у =28 домножим на 3
1,5 у-1,5 х=24 домножим на 10
5х+5у=84
15у-15х=240 разделим на 3
5х+5у=84
5у-5х=80
Решим систему сложения двух уравнений:
10у = 164
5у-5х = 80
5у - 5х = 80
у = 16,4
5*16,4 - 5х = 80
у=16,4
-5 х = 80-82
у = 16,4
-5 х = -2
у = 16,4
х = 0,4
у = 16,4
ответ: 0,4 (км/ч) - скорость течения реки
1) Область определения - (-оо; +оо)
2) Ни четная, ни нечетная, не периодическая.
3) y(0) = -1; y = 0 в трех иррациональных точках
x1 ~ -1,755; x2 ~ -0,085; x3 ~ 3,34
4) Асимптот нет
5) y ' = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x - 2)(x + 1) = 0
x1 = -1; y(-1) = -2 - 3 + 12 - 1 = 6 - максимум
x2 = 2; y(2) = 2*8 - 3*4 - 12*2 - 1 = 16 - 12 - 24 - 1 = -21 - минимум
При x = (-oo; -1) U (2; +oo) - возрастает
При x = (-1; 2) - убывает
6) y '' = 12x - 6 = 6(2x - 1) = 0
x = 1/2; y(1/2) = 2/8 - 3/4 - 12/2 - 1 = -1/2 - 6 - 1 = - 7,5 - точка перегиба
При x < 1/2 будет y '' < 0; график выпуклый вверх.
При x > 1/2 будет y '' > 0, график выпуклый вниз.
7) График