Чередуются цифры: 3, 9, 7, 1. Если показатель степени с основанием 3 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 3, 9 или 7).
Чередуются цифры: 7, 9, 3, 1. Если показатель степени с основанием 7 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 7, 9 или 3).
16 = 4*4 + 0, следовательно, числа и оканчиваются на 1, а их сумма (...1 + ...1) на 2.
Для таких рассуждений есть строгие формальные обозначения, но их далеко не всегда проходят в школе. Вот так выглядит более строгое решение:
Зависимость двух величин является обратной пропорциональностью, если их произведение является постоянным числом, отличным от нуля ( при увеличении одной переменной в несколько раз вторая уменьшается в такое же число раз).
Общий вид формул прямой пропорциональности у = k•x, где к - произвольное число, а х и у - переменные.
Общий вид формул обратной пропорциональности у = k/x, где к - отличное от нуля число, а х и у - переменные.
ab=56 - обратно пропорциональные величины а и b.
b=n:7, n = 7•b - прямо пропорциональные величины.
a=8•b - прямо пропорциональные величины.
b=7:n, b•n = 7 - обратно пропорциональные величины.
a=b8, а = 8•b - прямо пропорциональные величины.
56a=b, b = 56•a - прямо пропорциональные величины.
Чередуются цифры: 3, 9, 7, 1.
Если показатель степени с основанием 3 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 3, 9 или 7).
Чередуются цифры: 7, 9, 3, 1.
Если показатель степени с основанием 7 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 7, 9 или 3).
16 = 4*4 + 0, следовательно, числа и оканчиваются на 1, а их сумма (...1 + ...1) на 2.
Для таких рассуждений есть строгие формальные обозначения, но их далеко не всегда проходят в школе. Вот так выглядит более строгое решение:
ab=56; b=7:n.
Объяснение:
Зависимость двух величин является обратной пропорциональностью, если их произведение является постоянным числом, отличным от нуля ( при увеличении одной переменной в несколько раз вторая уменьшается в такое же число раз).
Общий вид формул прямой пропорциональности у = k•x, где к - произвольное число, а х и у - переменные.
Общий вид формул обратной пропорциональности у = k/x, где к - отличное от нуля число, а х и у - переменные.
ab=56 - обратно пропорциональные величины а и b.
b=n:7, n = 7•b - прямо пропорциональные величины.
a=8•b - прямо пропорциональные величины.
b=7:n, b•n = 7 - обратно пропорциональные величины.
a=b8, а = 8•b - прямо пропорциональные величины.
56a=b, b = 56•a - прямо пропорциональные величины.