6x² + 6/x² + 5x + 5/x - 38 = 0
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
x ≠ 0
замена
1/x + x = t
(1/x + x)² = t²
1/x² + 2*1/x * x + x² = t²
1/x² + 2 + x² = t²
1/x² + x² = t² - 2
6(t² - 2) + 5t - 38 = 0
6t² - 12 + 5t - 38 = 0
6t² + 5t - 50 = 0
D = 25 + 4*50*6 = 1225 = 35²
t12 = (-5 +- 35)/12 = 30/12 (5/2) - 40/12 (-10/3)
обратно к х
1. 1/x + x = 5/2
2x² - 5x + 2 = 0
D = 25 - 16 = 9 = 3²
x12 = (5 +- 3)/4 = 2 1/2
2. 1/x + x = -10/3
3x² + 10x + 3 = 0
D = 100 - 36 = 64 = 8²
x12 = (-10 +- 8)/6 = -3 -1/3
ответ x = {2,1/2,-3,-1/3}
вкратце
В решении.
Объяснение:
Сократить дробь:
а) (-16с⁵)/12с³=
сократить (разделить) 16 и 12 на 4, с⁵ и с³ на с³:
=(-4с²)/3=
= -4с²/3;
б) (4a-4b)/(3a-3b)=
=4(a-b)/3(a-b)=
сократить (разделить) (a-b) и (a-b) на (a-b):
=4/3;
в) (а²-5а)/(25-а²)=
=(а²-5а)/ -(а²-25)=
=а(а-5)/ -[(а-5)(а+5)]=
сократить (разделить) (а-5) и (а-5) на (а-5):
= -а/(а+5);
г) a⁵b⁷/a⁷b⁵=
при делении показатели степеней вычитаются (при одинаковых основаниях):
сократить (разделить) а⁵ и а⁷ на а⁵, b⁵ и b⁷ на b⁵:
=1*b²/a²*1=
=b²/a²;
д) (3х³+3ху²)/(6ух²+6у³)=
=3х(х²+у²)/6у(х²+у²)=
сократить (разделить) 3 и 6 на 3, (х²+у²) и (х²+у²) на (х²+у²):
=х/2у;
е) (b²-4)/(8-b³)=
в числителе разность квадратов, развернуть, в знаменателе разность кубов, развернуть:
=[(b-2)(b+2)] / (2³-b³)=
=[(b-2)(b+2)] / -(b³-2³)=
=[(b-2)(b+2)] / -[(b-2)(b²+2b+4)]=
сократить (разделить) (b-2) и (b-2) на (b-2):
= -(b+2)/(b²+2b+4).
6x² + 6/x² + 5x + 5/x - 38 = 0
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
x ≠ 0
замена
1/x + x = t
(1/x + x)² = t²
1/x² + 2*1/x * x + x² = t²
1/x² + 2 + x² = t²
1/x² + x² = t² - 2
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
6(t² - 2) + 5t - 38 = 0
6t² - 12 + 5t - 38 = 0
6t² + 5t - 50 = 0
D = 25 + 4*50*6 = 1225 = 35²
t12 = (-5 +- 35)/12 = 30/12 (5/2) - 40/12 (-10/3)
обратно к х
1. 1/x + x = 5/2
2x² - 5x + 2 = 0
D = 25 - 16 = 9 = 3²
x12 = (5 +- 3)/4 = 2 1/2
2. 1/x + x = -10/3
3x² + 10x + 3 = 0
D = 100 - 36 = 64 = 8²
x12 = (-10 +- 8)/6 = -3 -1/3
ответ x = {2,1/2,-3,-1/3}
вкратце
В решении.
Объяснение:
Сократить дробь:
а) (-16с⁵)/12с³=
сократить (разделить) 16 и 12 на 4, с⁵ и с³ на с³:
=(-4с²)/3=
= -4с²/3;
б) (4a-4b)/(3a-3b)=
=4(a-b)/3(a-b)=
сократить (разделить) (a-b) и (a-b) на (a-b):
=4/3;
в) (а²-5а)/(25-а²)=
=(а²-5а)/ -(а²-25)=
=а(а-5)/ -[(а-5)(а+5)]=
сократить (разделить) (а-5) и (а-5) на (а-5):
= -а/(а+5);
г) a⁵b⁷/a⁷b⁵=
при делении показатели степеней вычитаются (при одинаковых основаниях):
сократить (разделить) а⁵ и а⁷ на а⁵, b⁵ и b⁷ на b⁵:
=1*b²/a²*1=
=b²/a²;
д) (3х³+3ху²)/(6ух²+6у³)=
=3х(х²+у²)/6у(х²+у²)=
сократить (разделить) 3 и 6 на 3, (х²+у²) и (х²+у²) на (х²+у²):
=х/2у;
е) (b²-4)/(8-b³)=
в числителе разность квадратов, развернуть, в знаменателе разность кубов, развернуть:
=[(b-2)(b+2)] / (2³-b³)=
=[(b-2)(b+2)] / -(b³-2³)=
=[(b-2)(b+2)] / -[(b-2)(b²+2b+4)]=
сократить (разделить) (b-2) и (b-2) на (b-2):
= -(b+2)/(b²+2b+4).