F - первообразная для f, если f = F'. Но так как производная от суммы - это сумма производных, и производная от числа равна нулю, то можно написать f = F' = (F+C)', где С - любое число.
То есть первообразная - это не какая-то одна функция, это класс функций. Для всех разных чисел С - будет разная первообразная F + C, и производная от каждой из них равна f.
У вас в задаче табличные вещи, поэтому гляньте в табличке первообразных.
В общем, первообразная будет
F(х) = 4x + sin(x) + C
Надо, что б если подставить вместо икса П/6, F получилась равной П.
F - первообразная для f, если f = F'. Но так как производная от суммы - это сумма производных, и производная от числа равна нулю, то можно написать f = F' = (F+C)', где С - любое число.
То есть первообразная - это не какая-то одна функция, это класс функций. Для всех разных чисел С - будет разная первообразная F + C, и производная от каждой из них равна f.
У вас в задаче табличные вещи, поэтому гляньте в табличке первообразных.
В общем, первообразная будет
F(х) = 4x + sin(x) + C
Надо, что б если подставить вместо икса П/6, F получилась равной П.
sin(П\6) = 1/2, так как это синус 30 градусов
Получается равенство
П = 4*П\6 + 1\2 + С
6П = 4П+3 + 6С
С = (2П-3)\6
значит F = 4x + sin(x) + (2П-3)/6
1.
а) (2h-3)^2=4h^2-12h+9 (квадрат разности)
б) (x+5y)^2=x^2+10xy+25y^2 (квадрат суммы)
в) (2/3 a-b)(2/3a+b)=4/9 a^2-b^2 (разность квадратов)
2.
а) (r+2)(r-5)-(r+4)^2=r^2-5r+2r-10-r^2-8r-16= -11 r - 26 (квадрат суммы)
б) 3(a+2b)^2-12ab=3a^2+12ab+12b^2-12ab=3a^2+12b^2 (квадрат суммы)
в) (m-1)(m^2+m+1)-m^3=m^3-1-m^3=-1 (разность кубов)
3.
(18a^5-6*a^4*b)/6a^3=6a^3(3a^2-ab)/6a^3=3a^2-ab=3*25-5*(-10)=75+50=125 (вынесение общего множителя за скобки)
4.
Пусть a-1, a, a+1 - три последовательных натуральных числа.
(a-1)^2+41=a(a+1)
a^2-2a+1+41=a^2+a
3a=42
a=14
14-1=13
14+1=15
ответ: 13, 14, 15.