186.
4y-3x=17
первая пара: (5;8) подставляем: 4*8-3*5 = 17
17=17 значит пара является решением
вторая пара (1;4) подставляем: 4*4-3*1=17
13 не равно 17 пара не подходит
третья пара (-3;2) подставляем 4*2-3*(-3)=17
четвертая пара: (-2;3) подставляем: 4*3-3*(-2)=17
18 не равно 17 значит не подходит
187.
4х-5y=30
первая точка А (1;-4). подставляем: 4*1 - 5*(-4) = 30
24 не равно 30, значит точка не подходит
вторая точка В (0;-6) подставляем: 4*0-5*(-6)=30
30=30, значит точка подходит
третья точка С (5;-2) подставляем 4*5-5*(-2)=30
188.
2х-5y=13 Дано: (х;5), то есть y=5 Найти: х
подставляем: 2х-5*5=13
2х=38
х=19
1) х₁=0, х₂=5, х₃=-5
2) х=1/12
3) х₁=3, х₂=4, х₃=-4.
Объяснение:
1) 4x³-100x = 0
Выносим общий множитель - 4х - за скобки.
4х(х²-25)=0
Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.
4х=0
х=0
х²-25=0
х²=25
х=±√25
х=±5
ответ: х₁=0, х₂=5, х₃=-5.
2) 144x^3-24x^2+x=0
Выносим общий множитель - х - за скобки.
х(144х²-24х+1)=0
144х²-24х+1=0
Квадратное уравнение решаем через дискриминант.
Уравнение будет иметь один корень, т.к. дискриминант равен нулю.
ответ: х=1/12.
3) x³-3x²-16x+48=0
Сгруппируем.
(х³-3х²)+(-16х+48)=0
Из первой скобки вынесем общий множитель х², а из второй (-16).
х²(х-3)-16(х-3)=0
Вынесем за скобки общий множитель (х-3).
(х-3)(х²-16)=0
х-3=0
х=3
х²-16=0
х²=16
х=±√16
х=±4
ответ: х₁=3, х₂=4, х₃=-4.
186.
4y-3x=17
первая пара: (5;8) подставляем: 4*8-3*5 = 17
17=17 значит пара является решением
вторая пара (1;4) подставляем: 4*4-3*1=17
13 не равно 17 пара не подходит
третья пара (-3;2) подставляем 4*2-3*(-3)=17
17=17 значит пара является решением
четвертая пара: (-2;3) подставляем: 4*3-3*(-2)=17
18 не равно 17 значит не подходит
187.
4х-5y=30
первая точка А (1;-4). подставляем: 4*1 - 5*(-4) = 30
24 не равно 30, значит точка не подходит
вторая точка В (0;-6) подставляем: 4*0-5*(-6)=30
30=30, значит точка подходит
третья точка С (5;-2) подставляем 4*5-5*(-2)=30
30=30, значит точка подходит
188.
2х-5y=13 Дано: (х;5), то есть y=5 Найти: х
подставляем: 2х-5*5=13
2х=38
х=19
1) х₁=0, х₂=5, х₃=-5
2) х=1/12
3) х₁=3, х₂=4, х₃=-4.
Объяснение:
1) 4x³-100x = 0
Выносим общий множитель - 4х - за скобки.
4х(х²-25)=0
Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.
4х=0
х=0
х²-25=0
х²=25
х=±√25
х=±5
ответ: х₁=0, х₂=5, х₃=-5.
2) 144x^3-24x^2+x=0
Выносим общий множитель - х - за скобки.
х(144х²-24х+1)=0
х=0
144х²-24х+1=0
Квадратное уравнение решаем через дискриминант.
Уравнение будет иметь один корень, т.к. дискриминант равен нулю.
ответ: х=1/12.
3) x³-3x²-16x+48=0
Сгруппируем.
(х³-3х²)+(-16х+48)=0
Из первой скобки вынесем общий множитель х², а из второй (-16).
х²(х-3)-16(х-3)=0
Вынесем за скобки общий множитель (х-3).
(х-3)(х²-16)=0
х-3=0
х=3
х²-16=0
х²=16
х=±√16
х=±4
ответ: х₁=3, х₂=4, х₃=-4.