1) первая скобка равна нулю при х=±8, вторая по Виету при х=1;х=9
-818__9
+ - + - +
х∈(-∞;-8]∪[1;8]∪[9;+∞)
2) первая скобка равна нулю при х=0; х=-7, вторая по Виету при х=1;х=6
___-70___16
х∈(-7;0)∪(1;6)
3) По Виету корни числителя х=-3, х=4, а корни знаменателя х=±6
-6-346
х∈(-6;-3]∪[4;6)
4) корни числителя х=(-1±√4)/3=(-1±2)/3; х=-1; х=1/3
Корни знаменателя по Виету х=1; х=-3/4
-1-3/41/31
х∈(-∞;-1]∪(-3/4;1/3]∪(1;+∞)
Даны точки A(-1;4), B(3;1), C(3,4). Найдите вектор c= 2 CA+3ABОбозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
1
CD=
6
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
:4=
∗
∗4
6∗
sm
1) первая скобка равна нулю при х=±8, вторая по Виету при х=1;х=9
-818__9
+ - + - +
х∈(-∞;-8]∪[1;8]∪[9;+∞)
2) первая скобка равна нулю при х=0; х=-7, вторая по Виету при х=1;х=6
___-70___16
+ - + - +
х∈(-7;0)∪(1;6)
3) По Виету корни числителя х=-3, х=4, а корни знаменателя х=±6
-6-346
+ - + - +
х∈(-6;-3]∪[4;6)
4) корни числителя х=(-1±√4)/3=(-1±2)/3; х=-1; х=1/3
Корни знаменателя по Виету х=1; х=-3/4
-1-3/41/31
+ - + - +
х∈(-∞;-1]∪(-3/4;1/3]∪(1;+∞)
Даны точки A(-1;4), B(3;1), C(3,4). Найдите вектор c= 2 CA+3ABОбозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm