Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно второе уравнение умножить на 6:
3х+6у=0
12х-6у=30
Складываем уравнения:
3х+12х+6у-6у=30
15х=30
х=30/15
х=2
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
нужно построить в одной системе координат графики функций у = х2 и
у = 2х + 3 . Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х1 = -1, х2 = 3.
х²=2х+3 х²-2х-3 Построим график функции у = х2 - 2х - 3
1) Имеем а = 1, b = -2, х=-b/2a=1, у = f(1) = I2 - 2 - 3 = - 4. Значит, вершиной параболы служит точка (1;- 4), а осью параболы — прямая х = 1.
2) Возьмем на оси х две точки, симметричные относительно оси параболы: точки х = -1 и х =3. Имеем /(-1) = /(3) = 0; отметим в координатной плоскости точки (-1; 0) и (3; 0).
3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис.1).Корнями уравнения
х2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; находим
Решение системы уравнений х=2
у= -1
Объяснение:
Решить систему методом алгебраического сложения
3х+6у=0
2х-у-5=0
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно второе уравнение умножить на 6:
3х+6у=0
12х-6у=30
Складываем уравнения:
3х+12х+6у-6у=30
15х=30
х=30/15
х=2
Теперь значение х подставляем в любое из двух уравнений системы и вычисляем у:
3х+6у=0
6у= -3х
6у= -3*2
6у= -6
у= -1
Решение системы уравнений х=2
у= -1
нужно построить в одной системе координат графики функций у = х2 и
у = 2х + 3 . Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х1 = -1, х2 = 3.
х²=2х+3 х²-2х-3 Построим график функции у = х2 - 2х - 3
1) Имеем а = 1, b = -2, х=-b/2a=1, у = f(1) = I2 - 2 - 3 = - 4. Значит, вершиной параболы служит точка (1;- 4), а осью параболы — прямая х = 1.
2) Возьмем на оси х две точки, симметричные относительно оси параболы: точки х = -1 и х =3. Имеем /(-1) = /(3) = 0; отметим в координатной плоскости точки (-1; 0) и (3; 0).
3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис.1).Корнями уравнения
х2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; находим
x1= -1,
x2 = 3
рисовать не буду нет времени
его можно решить
Объяснение: