) Найдите наибольшее значение функции y=x^3-12x+24 на отрезке [-4;0] y'=3x^2-12 y'=0 x=2 x=-2 y''=6x y(2)- минимум y(-2) max y(0)=24 y(-2)=-8+24+24=40 y(-4)=-64+24+48=8 ответ y(-2)=40 2) Найдите наибольшее значение функции y=(4x^2+49)/x на отрезке [-4;-1] y'=4-49/x^2 y'=0 4x^2=49 x^2=49/4 x1=7/2 x2=-7/2 y(-1)=-4-49=-53 y(-3,5)=-14-14=-28 ответ -28 3) Найдите наибольшее значение функции y=(4x-3)^2*(x+6)-9 на отрезке [-6;3] y'=8(x+6)(4x-3)+(4x-3)^2=32x^2-144+168x+16x^2+9-24x=48x^2+144x+135>0 y(3)=81*9-9=720
4) Найдите наименьшее значение функции y=6cosx-7x+8 на отрезке [-п/2;0] y'=-6sinx-7 y(0)=6+8=14 наименьшее y(-pi/2)=0+8+7pi/2>14
Решение.
1)
По теореме Виета
х₁ + х₂ = 3
По условию
4х₁+3х₂=15
2) Решаем полученную систему:
{х₁+х₂ = 3
{4х₁+3х₂ = 15
Умножим первое уравнение на (- 3)
{-3х₁ - 3х₂ = - 9
{4х₁ + 3х₂ = 15
Сложим
- 3х₁ - 3х₂ + 4х₁ + 3х₂ = - 9 + 15
х₁ = 6
Подставим в первое уравнение х₁ = 6 и найдем х₂
6 + х₂ =3
х ₂ = 3 - 6
х₂ = - 3
3) По теореме Виета
х₁ * х₂ = m
m = 6 * (-3)
m = - 18
ответ: х₁ = 6;
х₂ = - 3
m = - 18
y'=3x^2-12 y'=0 x=2 x=-2
y''=6x y(2)- минимум y(-2) max
y(0)=24
y(-2)=-8+24+24=40
y(-4)=-64+24+48=8
ответ y(-2)=40
2) Найдите наибольшее значение функции y=(4x^2+49)/x на отрезке [-4;-1]
y'=4-49/x^2 y'=0 4x^2=49 x^2=49/4
x1=7/2 x2=-7/2
y(-1)=-4-49=-53
y(-3,5)=-14-14=-28
ответ -28
3) Найдите наибольшее значение функции y=(4x-3)^2*(x+6)-9 на отрезке [-6;3]
y'=8(x+6)(4x-3)+(4x-3)^2=32x^2-144+168x+16x^2+9-24x=48x^2+144x+135>0
y(3)=81*9-9=720
4) Найдите наименьшее значение функции y=6cosx-7x+8 на отрезке [-п/2;0]
y'=-6sinx-7
y(0)=6+8=14 наименьшее
y(-pi/2)=0+8+7pi/2>14