Выполнить задание: 1.Дана функция y = 2x – 3. Вычислите значения функции при x = -3 и x = 1. 2.Для функции y = -1,5x – 5. Найдите значение x, при котором y = 1. 3.Назовите область определения функции, заданной формулой: а) у = 2х; б) у = 2х 4.Постройте график функции у = 5х. По графику функции найдите: а) чему равно значение функции, если значение аргумента равно 1;-3; б) при каком значении аргумента значение функции равно 0; -2; в) проходит ли график через точку К(2;-10); С(-3; -15); N(0,2; 1).
- + -
_____- 3√5______ 3√5 _____
min max
x = - 3√5 - точка минимума, так как при переходе через эту точку призводная меняет знак с "-" на "+" .
x = 3√5 - точка максимума, так как при переходе через эту точку призводная меняет знак с "+" на "-" .
2) f(x) = - 24x + x³
f'(x) = - 24(x)' + (x³)' = - 24 + 3x²
f'(x) = 0 ⇒ - 24 + 3x² = 0
x² = 8
x₁,₂ = ± √8 = ± 2√2
+ - +
______ - 2√2 ______ 2√2 ______
max min
- + +
______ - 0,25 ____________0_____
min точка перегиба
4) f(x) = x³ - 15x⁴
f'(x) = (x³)' - 15(x⁴)'= 3x² - 15 * 4x³ = 3x² - 60x³ = 3x²(1 - 20x)
f'(x) = 0
3x² (1 - 20x) = 0
x₁ = 0
x₂ = 0,05
+ + -
______ 0,05 _______ 0 ______
точка перегиба max
Корнем явл. любое число 0=0
ответ разместил: Гость
при m < n
объяснение:
чем больше степень корня, тем меньшее число мы получим при извлечении:
возьмём \sqrt[3]{3} и \sqrt[4]{4}.
1,44 > 1,41.
возьмём \sqrt[4]{4} и \sqrt[5]{5}
1,41 > 1,37
возьмём \sqrt[5]{5} и \sqrt[6]{6}
1,37 > 1,34
возьмём \sqrt[6]{6} и \sqrt[7]{7}
1,34 > 1,32.
это простенько
возьмём \sqrt[99]{99} и \sqrt[100]{100}\
1,04750 > 1,04712
возьмём совсем экстремальный пример \sqrt[999]{999} и \sqrt[1000]{1000}
1,006937 > 1,006931
Объяснение:
я старался