Выполнить задания. Решить с решением : Задание 1 Товар на распродаже уценили на 45%, при этом он стал стоить 770 р. Сколько рублей стоил товар до распродажи? Задание 2 Бегун пробежал 50 м за 5 секунд. Найдите среднюю скорость бегуна на дистанции. ответ дайте в километрах в час. Задание 3 На плане указано, что прямоугольная комната имеет площадь 15,2 кв.м. Точные измерения показали, что ширина комнаты равна 3 м, а длина 5,1 м. На сколько квадратных метров площадь комнаты отличается от значения, указанного в плане? Задание 4 Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. ВЕЛИЧИНЫ А) время обращения Земли вокруг Солнца Б) длительность односерийного фильма В) длительность звучания одной песни Г) продолжительность вспышки фотоаппарата Возможные значения : 1) 3,5 минуты 2) 105 минут 3) 365 суток 4) 0,1 секунды Задание 5.Игральную кость с 6 гранями бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, большее 3.
выделим полные квадраты
x²+6x+9-4y²+8x-4+16=0⇒(x+3)²-4(y-1)²=-16⇒(y-1)²/2²-(x+3)²/4²=1
это каноническое уравнение гиперболы, повернутой на 90° и смещенной по оси х на -3 единицы и по оси у на 1 единицу
координаты вершин: х=-3; у-1=2 и у-1=-2⇒у=3 и у=-1⇒(-3;3), (-3;-1)
координаты фокусов: х=-3; у-1=√(16+4)=√20=2√5 и у-1=-2√5⇒у=2√5+1≈5,472 и у=-2√5+1≈-3,472⇒(-3;5,472), (-3;-3,472)
эксцентриситет ε=2√5/2=√5≈2,236
уравнения директрис: у-1=2/√5≈0,894 и у-1≈-0,894⇒у=1,894 и у=0,106
уравнения асимптот: х+3=4(у-1)/2=2(у-1)=2у-2 и х+3=-2у+2⇒2у=х+5 и -2у=х+1⇒у=х/2+5/2 и у=-х/2-1/2
y =cosx -2sinx ; Xo =3π/2.
y ' = (cosx -2sinx) ' = (cosx) ' -(2sinx) ' = - sinx - 2cosx .
y(Xo) =y(3π/2) = - sin(3π/2) -2cos(3π/2) = - (-1) -2*0 = 1.
2) найдите точки экстремума и определите их характер y=x^3+x^2-5x-3
(ответ: Xmax=-1(2\3), Xmin=
y ' =(x³ +x² - 5x - 3)' = 3x² +2x -5 = 3(x +5/3)(x -1) .
y ' + - +
- 5/3 max 1 min
3 )Решите уравнение -2sin²x-cosx+1=0
Укажите корни, принадлежащие отрезку П ?
-2sin²x-cosx+1=0 ; x ∈ (π ;2π)
-2(1-cos²x) - cosx +1 = 0;
2cos²x - cosx -1 = 0 ;
производим замену переменной t =cosx .
2t² -t -1 =0 ;
D =1² -4*2(-1) =9 =3² .
t ₁=(1 -3)/(2*2) = -2/4 = -1/2;
t₂=(1+3)/(2*2) = 4/4 = 1.
[ cosx = -1/2 ; cosx = 1.
cosx = -1/2 ⇒ x =(+/-)2π/3 +2π*k , k∈Z ;
cosx = 1 ⇒ x =2π*k , k∈Z .
ответ : 2π/3 .