1)cos(2(pi/8+4pi))=cos(2(pi/8)) так как + 4pi - это просто два оборота, которые мы можем пропустить; 2)cos(2pi/8)=cos(pi/4)=корень из 2 делить на 2 (табличное значение) ;
Аналогично:
sin(2(pi/8-44pi))=sin(2(pi/8))=sin(2pi/8)=sin(pi/4)=корень из 2 делить на 2;
Из 1) и 2) получаем:
2 корня из 2 делить на 2, что равно корню из 2.
ответ: корень из 2.
Замечание: к любому углу в синусе, или косинусе, или тангенсе и др. можно прибавлять или вычитать сколько угодно раз 2 pi, при этом значение синуса или др. не поменяется. Например:
2)cos(2pi/8)=cos(pi/4)=корень из 2 делить на 2 (табличное значение) ;
Аналогично:
sin(2(pi/8-44pi))=sin(2(pi/8))=sin(2pi/8)=sin(pi/4)=корень из 2 делить на 2;
Из 1) и 2) получаем:
2 корня из 2 делить на 2, что равно корню из 2.
ответ: корень из 2.
Замечание: к любому углу в синусе, или косинусе, или тангенсе и др. можно прибавлять или вычитать сколько угодно раз 2 pi, при этом значение синуса или др. не поменяется. Например:
sin(x+2pi+2pi)=sin(x+4pi)=sin(x);
cos(x-pi-3pi-4pi)=cos(x-8pi)=cos(x-2pi-2pi-2pi-2pi)=cos(x);
Объяснение:
1) (a-5)(a+3) < (a+1)(a-7)
a^2-5a+3a-15 < a^2+a-7a-7
-2a-15 < - 6a-7
4a < 8
a < 2
Это неравенство верно вовсе не при любых а, а только при а меньше 2.
2) [5x+2] <= 3
Видимо, квадратные скобки это модуль. Неравенство распадается на два:
а) 5x+2 >= - 3
5x >= - 5
x >= - 1
б) 5x+2 <= 3
5x <= 1
x <= 1/5
Целые решения: - 1; 0
3) Пусть одна сторона равна 5 см, а другая больше неё в 4 раза, то есть 20 см.
Тогда периметр равен 2*(5+20) = 2*25 = 50 см.
Если первая сторона меньше 5 см, то вторая меньше 20 см, а периметр меньше 50 см.