Сначала разберёмся что такое равновеликая и равносоставленная фигура. Равновеликими называются те фигуры, которые равны по площади. Равносоставленные фигуры - это фигуры, которые можно разрезать на одинаковое число попарно равных фигур. Пример равносоставленных фигур смотрите на рис 1.1 и рис 1.2
Приступим к решению:
а) Пусть длина начального прямоугольника а₁, ширина b₁, тогда площадь- S₁. Тогда длина второго прямоугольника а₂, ширина b₂, площадь- S₂. По определению равновеликих фигур можем записать, что их площади равны, и каждая из которых равно произведению длины и ширины:
КАРТИНА ВОТ ТУТ ДОЛЖНА БЫТЬ
ответ: ширина второго прямоугольника равна 9 см.
б) Теорема гласит, что любые два равновеликих многоугольника равносоставлены. Но в нашем случае есть и другое условие, а именно: прямоугольники разделили на два треугольника диагональю (см рис 1.3). Полученные треугольники попарно неравные, следовательно равносоставленными их назвать нельзя
а) 9см б) нет
Пошаговое объяснение:
Сначала разберёмся что такое равновеликая и равносоставленная фигура. Равновеликими называются те фигуры, которые равны по площади. Равносоставленные фигуры - это фигуры, которые можно разрезать на одинаковое число попарно равных фигур. Пример равносоставленных фигур смотрите на рис 1.1 и рис 1.2
Приступим к решению:
а) Пусть длина начального прямоугольника а₁, ширина b₁, тогда площадь- S₁. Тогда длина второго прямоугольника а₂, ширина b₂, площадь- S₂. По определению равновеликих фигур можем записать, что их площади равны, и каждая из которых равно произведению длины и ширины:
КАРТИНА ВОТ ТУТ ДОЛЖНА БЫТЬ
ответ: ширина второго прямоугольника равна 9 см.
б) Теорема гласит, что любые два равновеликих многоугольника равносоставлены. Но в нашем случае есть и другое условие, а именно: прямоугольники разделили на два треугольника диагональю (см рис 1.3). Полученные треугольники попарно неравные, следовательно равносоставленными их назвать нельзя
x=8,y=2,z=2
Объяснение:
ну тут даже хз что сказать то
составим векторы
AM = {x,y-4,z-2}
BM = {x-4,y-3,z-2}
|AM|/|BM|=2
решаем это
sqrt(x^2+(y-4)^2+(z-2)^2)/sqrt((x-4)^2+(y-3)^2+(z-2)^2) = 2
отсюда имеем
x=4,y=4,z=0
x=4,y=4,z=4
x=6,y=0,z=2
x=8,y=2,z=2
составим уравнение прямой проходящей через две точки и сделаем это в параметрическом виде , получаем
x=4t
y=-t+4
z=2
тк z=2 то подходят нам координаты x=6,y=0,z=2 и x=8,y=2,z=2
подставим в систему с параметрами по очереди наши координаты
в результате получаем что x=8,y=2,z=2 -подходит
имеем точку M(8;2;2)
все это можно решить проще и я хз правильно ли решил это но все же прверь мб подходит