1)ответ: p = 5, q = 3. Пусть p – q = n, тогда p + q = n³. 2) ответ: Нет. Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b. Пусть искомый многочлен f(x) существует. Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3). Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1. Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени). То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
Пусть p – q = n, тогда p + q = n³.
2)
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
p и q - простые => p + q > 0 => (p – q)³ > 0 => p – q > 0 => ∀ (p;q) ∃ n∈N: p – q = n => p = q + n
q+n+q=n^3 => q=(n^3-n)/2 => q = (n-1)n(n+1)/2
Из трех подряд идущих натуральных чисел одно делится на 3 => (n-1)n(n+1) ⁞ 3. Т.к. НОД(2, 3)=1, то q = (n-1)n(n+1)/2 ⁞ 3. Т.к. q простое, то q=3.
(n-1)n(n+1)=6
n натуральное => (n-1)³<6=>n-1<∛6<∛8=2 => n<2+1=3
n=1 => (n-1)n(n+1)=0≠6
n=2 => (n-1)n(n+1)=1*2*3=6 - верно => p=3+2=5 - простое
ответ: (5; 3)