Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
Любая точка имеет 2 координаты: х и у. Надо просто вместо х и вместо у подставить указанные значения и посмотреть на получившееся равенство. а) А(3;27) х = 3, у = 27 у = х³ 27 = 3³ ( верно) ⇒ А ∈ графику б)В(-3; 27) х = -3, у = 27 у =х² 27 = (-3)² ( неверно) ⇒ В∉ графику в) С( -1; 1) х = -1; у = 1 у = х³ 1 = (-1)³ (неверно) ⇒ С∉ графику г) Д(0;1) х = 0; у = 1 у = х³ 1 = 0³ (неверно)⇒ Д ∉ графику д) Е(-2; -8) х = -2; у = -8 у = х³ -8 = (-2)³ (верно) ⇒ Е ∈ графику е) F(8; 2) х = 8; у = 2 у = х³ 2 = 8² (неверно) ⇒ F∉ графику
Хватит.
Объяснение:
Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
19500 / 3,25 = 6000 см
Соответственно, в пяти будет 6000 * 5 = 30000 см.
30000 > 29400, значит 5 рулонов ему хватит.
а) А(3;27)
х = 3, у = 27
у = х³
27 = 3³ ( верно) ⇒ А ∈ графику
б)В(-3; 27)
х = -3, у = 27
у =х²
27 = (-3)² ( неверно) ⇒ В∉ графику
в) С( -1; 1)
х = -1; у = 1
у = х³
1 = (-1)³ (неверно) ⇒ С∉ графику
г) Д(0;1)
х = 0; у = 1
у = х³
1 = 0³ (неверно)⇒ Д ∉ графику
д) Е(-2; -8)
х = -2; у = -8
у = х³
-8 = (-2)³ (верно) ⇒ Е ∈ графику
е) F(8; 2)
х = 8; у = 2
у = х³
2 = 8² (неверно) ⇒ F∉ графику