Т.к. а- натуральное число, то а=0 мы рассматривать не будем. Представим,что у нас неполное квадратное уравнение: 1) пусть a^2-25=0 ( нет свободного члена). a1=-5; a2=5 тогда уравнение будет выглядеть так: x^2-(2a-4)x=0 x(x-2a+4)=0 - как видим, уравнение имеет два корня a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю 2a-4=0; a=2 Уравнение примет вид: x^2+2^2-25=0 x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0. D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0; -16a>=-116; a<=7,25 Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.
1,(18)=1+0,(18)
0,(18)=x
18,(18)=100x
18+0,(18)=100x
18+x=100x
18=99x
x=18/99
x=2/11
0,(18)=2/11
1,(18)=1+0,(18) =1+2/11=13/11
2,(27)=7+0,(27)
0,(27)=x
27,(27)=100x
27+0,(27)=100x
27+x=100x
27=99x
x=27/99
x=3/11
0,(27)=3/11
1,(27)=1+0,(27) =1+3/11=14/11
0,(13)=x
13,(13)=100x
13+0,(13)=100x
13+x=100x
13=99x
x=13/99
0,(13)=13/99
2,(23)=7+0,(23)
0,(23)=x
23,(23)=100x
23+0,(23)=100x
23+x=100x
23=99x
x=23/99
x=23/99
0,(23)=23/99
2,(23)=2+0,(23) =2+23/99
Представим,что у нас неполное квадратное уравнение:
1) пусть a^2-25=0 ( нет свободного члена).
a1=-5; a2=5
тогда уравнение будет выглядеть так:
x^2-(2a-4)x=0
x(x-2a+4)=0 - как видим, уравнение имеет два корня
a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю
2a-4=0; a=2
Уравнение примет вид:
x^2+2^2-25=0
x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0.
D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0;
-16a>=-116; a<=7,25
Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.