Заданное выражение записываем в виде функции: у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х). Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая. Найдём производную этой функции. y' = 5 - (3/x²) и приравняем её нулю. 5 - (3/x²) = 0. (5x² - 3)/x² = 0. Достаточно приравнять нулю числитель. 5x² - 3 = 0. x² = 3/5. x = +-√(3/5). Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения: у = -5 + 2√15 ≈ 2,7459667, у = -5 - 2√15 ≈ -12,745967. В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений. Получаем область допустимых значений функции: x ≤ -12,745967, x ≥ 2,7459667. Эти же значения можно записать так: x ≤ -5 - 2√15, x ≥ -5 + 2√15.
Дана квадратичная функция h(t)=24t−4t², графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы.Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.x₀=t₀=(−b)/2а =−24 /2(-4) = 3 секунды. Время, через которое мяч упадет на землю, равно 2⋅t₀=2⋅3=6 секунд.y₀=h₀= 24⋅3-4⋅3²=72-36=36 метров.
у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х).
Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая.
Найдём производную этой функции.
y' = 5 - (3/x²) и приравняем её нулю.
5 - (3/x²) = 0.
(5x² - 3)/x² = 0. Достаточно приравнять нулю числитель.
5x² - 3 = 0.
x² = 3/5.
x = +-√(3/5).
Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения:
у = -5 + 2√15 ≈ 2,7459667,
у = -5 - 2√15 ≈ -12,745967.
В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений.
Получаем область допустимых значений функции:
x ≤ -12,745967, x ≥ 2,7459667.
Эти же значения можно записать так:
x ≤ -5 - 2√15, x ≥ -5 + 2√15.