Всего выбрать троих дежурных из десяти человек можно столькими первым дежурным может быть любой из десяти человек, вторым - любой из девяти оставшихся, третий - любой из восьми, но так как порядок не имеет значения, нужно еще разделить на 3*2*1, количество перестановок из трех человек, что считается по аналогии):
Теперь подсчитаем количество в которых все дежурные - женщины (это тоже самое, что и выбрать трех человек из семи):
Следовательно, вероятность равна:
Если округлить это число до тысячных, то получится 0,292.
2)5m^4-320mn³ =5m(m^3 - 64n^3) = 5m[m^3 -(4n)^3] = 5m(m-4n)(m^2+4mn + +16n^2 )
3)6c^5-6c^8 = 6c^5(1-c^3) = 6c^5(1 - c)(1+c+c^2)
№716.Разложите на множители:
1)с^6+с^9 = c^6(1 + c^3) = c^6(1+c)(1-c+c^2)
2)m^9-n^9 = (m^3)^3 - (n^3)^3 = (m^3 - n^3)(m^6 +m^3n^3 +n^6
3)a^8-b^4 = a^5*a^3 - b*b^3 = (a^5*a - b*b)[(a^5*a)^2 +a^5*a*b*b + (b*b)^2] =
= (a^6 - b^2)(a^12 + a^6b^2 + b^4)
№718.Разложите на множители:
1)15сx+2cy-cxy-30c = 15c(x-2) - cy(x-2) = (x-2)(15c -cy) = c(15-y)(x-2)
2)35a²-42ab+10a²b-12ab² = 5a² (7+2b) - 6ab(7+2b) = ((7+2b)(5a² - 6ab) =
=a(5a-6b)(7+2b)
3)x³+x²y+x²+xy = x²(x+1) + xy(x+1) = (x+1)(x² + xy)
4)mn^4-n^4+mn³-n³ = n^4(m-1) + n^3(m-1) = (m-1)(n^4+n^3)
ответ: 0,292.
Всего выбрать троих дежурных из десяти человек можно столькими первым дежурным может быть любой из десяти человек, вторым - любой из девяти оставшихся, третий - любой из восьми, но так как порядок не имеет значения, нужно еще разделить на 3*2*1, количество перестановок из трех человек, что считается по аналогии):
Теперь подсчитаем количество в которых все дежурные - женщины (это тоже самое, что и выбрать трех человек из семи):
Следовательно, вероятность равна:
Если округлить это число до тысячных, то получится 0,292.