В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
nikita1232534
nikita1232534
16.06.2021 11:38 •  Алгебра

Выполните вычисления, записывая каждое действие столбиком. 1 × (80 001 – 7 955) : 2 ​​84 м 67 см × 7​
34 509 × 8 + 56 789​​​ 7 кг 280 г : 4
решить

Показать ответ
Ответ:
kkkddd90
kkkddd90
17.09.2021 09:10
√4.5 * √72 = √4.5 *√ 9*8 = √4.5 * 3 * √8 = √4.5 * 3 * √4*2 = √4.5 * 3 * 2 * √2 = √4.5 * 6 * √2 = √4.5*√2 * 6 = √9 * 6 = 3*6 = 18
т.к выглядит по татарски , напишу письменно
корень их 4,5 умножим на корень из 72 , разложим 72 на множители- 9 и 8( что бы корень исчез)  , корень из 9 - это 3 , следовательно получаем:
корень из √4.5 * 3 * √8 . 8 тоже можно разложить на множители - это 4*2
а корень из 4 - это 2,
получаем корень из 4,5, умноженное на 3, умноженное на на 2  и ещё раз умноженное на корень из двух
3 и 2 перемножаем , получаем 6.
и теперь у нас остаётся корень из 4,5 и корень из двух
их мы тоже перемножим , получим корень из 9
а корень из 9 - это 3
получается что 6*3=18
ОТВЕТ : 18
спрашивай, если что не понятно 
0,0(0 оценок)
Ответ:
timursharipov2
timursharipov2
19.04.2023 19:45

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота