Объяснение:Самый универсальный и могучий Функция, заданная аналитически, это функция, которая задана формулами. Собственно, это и есть всё объяснение.) Знакомые всем (хочется верить!)) функции, например: y = 2x, или y = x2 и т.д. и т.п. заданы именно аналитически.
К слову сказать, не всякая формула может задавать функцию. Не в каждой формуле соблюдается жёсткое условие из определения функции. А именно - на каждый икс может быть только один игрек. Например, в формуле у = ±х, для одного значения х=2, получается два значения у: +2 и -2. Нельзя этой формулой задать однозначную функцию. А с многозначными функциями в этом разделе математики, в матанализе, не работают, как правило.
Чем хорош аналитический задания функции? Тем, что если у вас есть формула - вы знаете про функцию всё! Вы можете составить табличку. Построить график. Исследовать эту функцию по полной программе. Точно предсказать, где и как будет вести себя эта функция. Весь матанализ стоит именно на таком задания функций. Скажем, взять производную от таблицы крайне затруднительно...)
Аналитический достаточно привычен и проблем не создаёт. Разве что некоторые разновидности этого с которыми сталкиваются студенты. Я про параметрическое и неявное задание функций.)
(в соответствующее окно вводи целое число — положительное или отрицательное): f(0) = -1
Это: минимум функции
a) наибольшее значение функции f(-3 ) = 8
б) наименьшее значение функции f(0) = -1
a) функция положительна, если
x∈[−3;−1)∪(1;5]
б) функция отрицательна, если
x∈(−1;1)
Функция :
ни чётная, ни нечётная
Нули функции (выбери несколько вариантов ответов):
x=−1
x=1
a) точки пересечения с осью x (-1;0) и (1;0) (вводи координаты точек в возрастающей последовательности, не используй пробел);
б) точка пересечения с осью y (0;-1)
(вводи координаты точек, не используя пробел; у точек, у которых невозможно определить точные координаты, вводи приближенные значения до двух цифр после запятой).
Объяснение:Самый универсальный и могучий Функция, заданная аналитически, это функция, которая задана формулами. Собственно, это и есть всё объяснение.) Знакомые всем (хочется верить!)) функции, например: y = 2x, или y = x2 и т.д. и т.п. заданы именно аналитически.
К слову сказать, не всякая формула может задавать функцию. Не в каждой формуле соблюдается жёсткое условие из определения функции. А именно - на каждый икс может быть только один игрек. Например, в формуле у = ±х, для одного значения х=2, получается два значения у: +2 и -2. Нельзя этой формулой задать однозначную функцию. А с многозначными функциями в этом разделе математики, в матанализе, не работают, как правило.
Чем хорош аналитический задания функции? Тем, что если у вас есть формула - вы знаете про функцию всё! Вы можете составить табличку. Построить график. Исследовать эту функцию по полной программе. Точно предсказать, где и как будет вести себя эта функция. Весь матанализ стоит именно на таком задания функций. Скажем, взять производную от таблицы крайне затруднительно...)
Аналитический достаточно привычен и проблем не создаёт. Разве что некоторые разновидности этого с которыми сталкиваются студенты. Я про параметрическое и неявное задание функций.)
Интервал возрастания функции:
x∈(0;5]
Интервал убывания функции:
x∈(-3;0]
Экстремум функции
(в соответствующее окно вводи целое число — положительное или отрицательное): f(0) = -1
Это: минимум функции
a) наибольшее значение функции f(-3 ) = 8
б) наименьшее значение функции f(0) = -1
a) функция положительна, если
x∈[−3;−1)∪(1;5]
б) функция отрицательна, если
x∈(−1;1)
Функция :
ни чётная, ни нечётная
Нули функции (выбери несколько вариантов ответов):
x=−1
x=1
a) точки пересечения с осью x (-1;0) и (1;0) (вводи координаты точек в возрастающей последовательности, не используй пробел);
б) точка пересечения с осью y (0;-1)
(вводи координаты точек, не используя пробел; у точек, у которых невозможно определить точные координаты, вводи приближенные значения до двух цифр после запятой).
привет, из интернетУрока)))
Объяснение: