МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22
МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22 МЫ КОМАНДА ДАЛБАЕБОВ ИЗ ОТ ОТРЯДЯ 22
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.