1. Если прогрессия является геометрической, она удовлетворяет условию q=b2/b1=b3/b2 и т.д. или bn=b1*q^n-1 1) q=2/1=4/2=8/4=2 bn=q^n-1 2) q=9/-27=-3/9=1/-3=-1/3 bn=-27q^n-1=-27*(-1/3)^n-1 3) q=6/2=18/6=54/18=3 bn=2*3^n-1 4) q=-8/2=16/-8 не равно, данная последовательность не является геометрической ответ: 1,2,3 последовательности являются геометрическими прогрессиями 2. bn=1,5*2^n-1 n>0 n-целое, натуральное число Необходимо проверить все варианты: 1,5*2^n-1=4,5 2^n-1=3 Ни при каких значениях n не будет удовлетворяться данное выражение, т.о. 4,5 не является членом данной прогрессии. 1,5*2^n-1=6 2^n-1=4 2^n-1=2^2 n-1=2 n=3 6 является 3 членом данной геометрической прогрессии. 1,5*2^n-1=15 2^n-1=10 Ни при каких значениях n не будет удовлетворяться данное выражение, т.о. 15 не является членом данной прогрессии.
ОДЗ : х² - 5х - 23 ≥ 0 2х² - 10х - 32 ≥ 0 Решение системы двух неравенств не так просто, поэтому при нахождении корней достаточно сделать проверку. Подставить корни в систему неравенств или подставить корни в уравнение
Так как 2х²-10х-32=2(х²-5х-16) то применяем метод замены переменной
х²-5х-23=t ⇒ x²-5x=t+23 x²-5x-16=t+23-16=t+7
Уравнение примет вид √t + √2·(t+7)=5
или
√2·(t+7) = 5 - √t
Возводим обе части уравнения в квадрат При этом правая часть должна быть положительной или равной 0 ( (5 - √t)≥0 ⇒√ t ≤ 5 ⇒ t ≤ 25)
2·( t + 7) = 25 - 10 √t + t
или
10·√t = 25 + t - 2t - 14
10·√t = 11 - t
Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0 t ≤ 11 Получаем уравнение
100 t = 121 - 22 t + t², при этом t ≤ 11
t² - 122 t + 121 = 0
D=122²-4·121=14884 - 484 = 14400=120
t₁=(122-120)/2= 1 или t₂= (122+120)/2 = 121 не удовлетворяет условию ( t ≤ 11)
1) q=2/1=4/2=8/4=2 bn=q^n-1
2) q=9/-27=-3/9=1/-3=-1/3
bn=-27q^n-1=-27*(-1/3)^n-1
3) q=6/2=18/6=54/18=3
bn=2*3^n-1
4) q=-8/2=16/-8 не равно, данная последовательность не является геометрической
ответ: 1,2,3 последовательности являются геометрическими прогрессиями
2. bn=1,5*2^n-1
n>0 n-целое, натуральное число
Необходимо проверить все варианты:
1,5*2^n-1=4,5
2^n-1=3
Ни при каких значениях n не будет удовлетворяться данное выражение, т.о. 4,5 не является членом данной прогрессии.
1,5*2^n-1=6
2^n-1=4
2^n-1=2^2
n-1=2
n=3
6 является 3 членом данной геометрической прогрессии.
1,5*2^n-1=15
2^n-1=10
Ни при каких значениях n не будет удовлетворяться данное выражение, т.о. 15 не является членом данной прогрессии.
2х² - 10х - 32 ≥ 0
Решение системы двух неравенств не так просто, поэтому при нахождении корней достаточно сделать проверку.
Подставить корни в систему неравенств или подставить корни в уравнение
Так как
2х²-10х-32=2(х²-5х-16)
то применяем метод замены переменной
х²-5х-23=t ⇒ x²-5x=t+23
x²-5x-16=t+23-16=t+7
Уравнение примет вид
√t + √2·(t+7)=5
или
√2·(t+7) = 5 - √t
Возводим обе части уравнения в квадрат
При этом правая часть должна быть положительной или равной 0
( (5 - √t)≥0 ⇒√ t ≤ 5 ⇒ t ≤ 25)
2·( t + 7) = 25 - 10 √t + t
или
10·√t = 25 + t - 2t - 14
10·√t = 11 - t
Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0 t ≤ 11
Получаем уравнение
100 t = 121 - 22 t + t², при этом t ≤ 11
t² - 122 t + 121 = 0
D=122²-4·121=14884 - 484 = 14400=120
t₁=(122-120)/2= 1 или t₂= (122+120)/2 = 121 не удовлетворяет условию ( t ≤ 11)
возвращаемся к переменной х:
х² - 5х - 23 = 1
х² - 5х - 24 = 0
D=25+96=121=11²
x₁=(5-11)/2=-3
х₂=(5+11)/2=8
Проверка
х = - 3 √(9 +15 - 23) + √2·(9 +15 - 16) = 5 - верно 1+4=5
х = 8 √(64 - 40 - 23) + √2·(64-40 -16) = 5 - верно 1+4=5
ответ. х₁=-3 х₂=8