Тут легко выразить x из первого уравнения. Нужно лишь перенести 2y
x = -2y
Теперь подставляем это во второе
5(-2y) + y = -18
-9y = -18
y = 2
Помним, что x = -2y ===> x = -4
Для самопроверки можно подставить в первое, в других номерах делать не буду, но тебе советую (не конкретно в этих, а вообще)
-4 + 4 = 0 Все верно
x = -4; y = 2
2.
Здесь тоже легко выразить x из первого.
2x = 10 + 5y
Подставляем в первое, умножаем не на 4, а на 2, т.к. у нас уже 2x.
2(10 + 5y) - y = 2
20 + 10y - y = 2
18 = -9y
y = -2
Подставляем в 2x = 10 + 5y > 2x = 10 - 10 ===> x = 0
x = 0; y = -2
3. Тут конечно тоже можно выразить x и т.д., но ради разнообразия решим через алгебраическое сложение уравнений. Складываем все, что левее равно в первом, с тем, что левее равно во втором, ну и с тем, что правее соответственно. Знаки не меняем!
x - 2y + y - x = 1 - 2
-y = -1
y = 1
Теперь ищем x из первого.
x - 2 = 1
x = 3; y = 1
4. Тут тоже подойдет метод алгебраического сложения. Вообще, в этом номере все можно решить, выражая одну из переменных через метод алг-го сложения удобнее. Есть системы, где выразить переменную сложнее. Часто именно сложением или вычитание (это все метод алгебраического сложения) решить.
Пусть первая бригада выполняет за смену х деталей, вторая бригада у деталей, третья бригада z - деталей. Тогда за смену три бригады выполняют вместе х+у+z=100 деталей (1). По условию у-х=5 и у-z=15. По-другому х=у-5 и z=y-15. Подставим в первое уравнение эти значения вместо х и z, получим у-5+у+y-15=100 3у-20=100 3у=100+20 3у=120 у=120:3 у=40 деталей в смену изготавливает вторая бригада. х=у-5=40-5=35 деталей в смену изготавливает первая бригада. z=у-15=40-15=25 деталей в смену изготавливает третья бригада. Проверка х+у+z=35+40+25=100. Всего 100 деталей изготавливают три бригады.
ответ: 35 деталей в смену изготавливает первая бригада, 40 деталей в смену изготавливает вторая бригада, 25 деталей в смену изготавливает третья бригада.
1.
Тут легко выразить x из первого уравнения. Нужно лишь перенести 2y
x = -2y
Теперь подставляем это во второе
5(-2y) + y = -18
-9y = -18
y = 2
Помним, что x = -2y ===> x = -4
Для самопроверки можно подставить в первое, в других номерах делать не буду, но тебе советую (не конкретно в этих, а вообще)
-4 + 4 = 0 Все верно
x = -4; y = 2
2.
Здесь тоже легко выразить x из первого.
2x = 10 + 5y
Подставляем в первое, умножаем не на 4, а на 2, т.к. у нас уже 2x.
2(10 + 5y) - y = 2
20 + 10y - y = 2
18 = -9y
y = -2
Подставляем в 2x = 10 + 5y > 2x = 10 - 10 ===> x = 0
x = 0; y = -2
3. Тут конечно тоже можно выразить x и т.д., но ради разнообразия решим через алгебраическое сложение уравнений. Складываем все, что левее равно в первом, с тем, что левее равно во втором, ну и с тем, что правее соответственно. Знаки не меняем!
x - 2y + y - x = 1 - 2
-y = -1
y = 1
Теперь ищем x из первого.
x - 2 = 1
x = 3; y = 1
4. Тут тоже подойдет метод алгебраического сложения. Вообще, в этом номере все можно решить, выражая одну из переменных через метод алг-го сложения удобнее. Есть системы, где выразить переменную сложнее. Часто именно сложением или вычитание (это все метод алгебраического сложения) решить.
x + y + x - y = -3 - 1
2x = -4
x = -2
Подставляем в первое.
-2 + y = -3
y = - 1
x = -2; y = -1
Все. Если будут во пиши.
p.s. Отметь, как лучший, если не сложно ;)
По условию у-х=5 и у-z=15. По-другому х=у-5 и z=y-15. Подставим в первое уравнение эти значения вместо х и z, получим
у-5+у+y-15=100
3у-20=100
3у=100+20
3у=120
у=120:3
у=40 деталей в смену изготавливает вторая бригада.
х=у-5=40-5=35 деталей в смену изготавливает первая бригада.
z=у-15=40-15=25 деталей в смену изготавливает третья бригада.
Проверка
х+у+z=35+40+25=100. Всего 100 деталей изготавливают три бригады.
ответ:
35 деталей в смену изготавливает первая бригада,
40 деталей в смену изготавливает вторая бригада,
25 деталей в смену изготавливает третья бригада.